基于同态加密的分布式加密流量分类隐私保护方法  

Privacy Protection Method of Distributed Encrypted Traffic Classification Based on Homomorphic Encryption

在线阅读下载全文

作  者:郭晓军[1,2] 靳玮琨 Guo Xiaojun;Jin Weikun(School of Information Engineering,Xizang Minzu University,Xianyang 712082,China;Xizang CyberspaceGovernance Research Base,Xianyang 712082,China)

机构地区:[1]西藏民族大学信息工程学院,咸阳712082 [2]西藏网络空间治理研究基地,咸阳712082

出  处:《西藏科技》2024年第8期72-80,共9页Xizang Science And Technology

摘  要:随着信息技术的飞速发展,数据量迅速增加,逐渐演变出了分布式存储方式。针对分布式数据存储方式中容易遭受模型训练梯度推理攻击造成梯度泄露,进而引发分布式节点中数据集泄露的问题,提出基于同态加密算法的分布式加密流量分类隐私保护方法(Pa-Fed)。在分布式节点完成训练后,本地模型将参数通过Paillier同态加密传递至中心服务器端。在中心服务器进行参数聚合时,仍然维持参数的密文状态,以确保在传输过程中的隐私性。实验能够较好地保持分类精确率,并且在加密后对分布式节点数据进行梯度推理攻击,有效地验证了分布式节点数据的隐私性。With the rapid development of information technology,the amount of data has increased rapidly,and the distributed storage methods have gradually evolved.To solve the problem that the distributed data storage mode is prone to gradient leakage caused by gradient inference attacks on model training,which in turn leads to the leakage of datasets in distributed nodes,a privacy protection method of distributed encrypted traffic classification(Pa-Fed)based on homomorphic encryption algorithm is proposed.After the distributed nodes are trained,the local model passes the parameters to the central server through Paillier homomorphic encryption.When the parameters are aggregated on the central server,the ciphertext state of the parameters is maintained to ensure privacy during transmission.The experiment can well maintain the classification accuracy rate,and carry out the gradient inference attack on the distributed node data after encryption,which effectively verifies the privacy of distributed node data.

关 键 词:同态加密 分布式 加密流量分类 隐私保护 

分 类 号:TP309[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象