基于物联网技术的智能安防系统弱电设备集成与优化研究  

Research on Integration and Optimization of Weak Current Equipment of Intelligent Security System Based on Internet of Things Technology

在线阅读下载全文

作  者:乔高林 QIAO Gaolin(Shaanxi Xixian New Area Jinghe New City Real Estate Development Co.,Ltd.,Xianyang,Shaanxi 713700,China)

机构地区:[1]陕西西咸新区泾河新城地产开发有限公司,陕西咸阳713700

出  处:《移动信息》2024年第8期261-263,共3页MOBILE INFORMATION

摘  要:为探索物联网技术在智能安防系统弱电设备中的集成与优化应用,文中提出了一种新的框架和流程。通过对现有弱电设备性能的深入分析,明确了基于关键性能指标的设备选择标准,并设计了相应的集成流程。集成方法采用模块化设计理念,融合了最新的传感器技术和无线通信协议,以构筑多层次、可拓展的系统模型。在此基础上,引入遗传算法对系统参数进行自适应优化,以提升系统响应的速度及稳定性,降低能耗。仿真实验验证结果显示,系统响应速度提升了20%,能耗降低了15%。该研究结合了物联网技术的灵活性和遗传算法的优化能力,为智能安防系统的弱电设备集成与性能提升提供了一种新的解决方案。In order to explore the integration and optimization application of Internet of Things technology in weak current equipment in intelligent security system,a new framework and process are proposed in this paper.Through in-depth analysis of the performance of existing weak current equipment,the equipment selection criteria based on key performance indicators are clarified,and the corresponding integration process is designed.The integration method adopts the modular design concept,integrates the latest sensor technology and wireless communication protocol to build a multi-level and scalable system model.On this basis,genetic algo is introduced to self-adaptively optimize the system parameters to improve the speed and stability of system response and reduce energy consumption.The simulation results show that the system response speed is increased by 20%and the energy consumption is reduced by 15%.The research combines the flexibility of IoT technology with the optimization capabilities of genetic algos to provide a new solution for the integration and performance improvement of weak current devices in intelligent security systems.

关 键 词:物联网技术 智能安防系统 弱电设备集成 优化算法 性能提升 

分 类 号:TP399[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象