基于U型注意力门自编码器的色织物缺陷检测方法  

Yarn-dyed fabric defect detection based on U-shaped attention gate auto-encoder

在线阅读下载全文

作  者:张玥 王世豪 李英健 刘帅波 张宏伟[1] ZHANG Yue;WANG Shihao;LI Yingjian;LIU Shuaibo;ZHANG Hongwei(School of Electronics and Information,Xi'an Polytechnic University,Xi'an,Shaanxi 710048,China)

机构地区:[1]西安工程大学电子信息学院,陕西西安710048

出  处:《光电子.激光》2024年第8期851-860,共10页Journal of Optoelectronics·Laser

基  金:国家自然科学基金(61803292);中国纺织工业联合会科技指导性计划项目(2020111);研究生创新基金(chx2023011)资助项目。

摘  要:针对现有的基于自编码器和生成对抗网络的无监督深度学习算法在色织物缺陷检测任务中,存在普适性差、漏检率和误检率偏高等问题,提出一种U型注意力门自编码器(U-shaped attention gate auto-encoder, UAGAE)的色织物缺陷检测算法。首先,采用轻量化网络EfficientNet-B6作为特征提取模块来获取输入图像更具代表性的特征,通过引入注意力门(attention gate, AG)机制来抑制无关区域的特征响应,以解码器的特征作为参考剔除跳跃连接中的冗余信息来辅助图像重构;然后,在训练阶段使用组合的损失函数保证重构图像的结构和细节;最后,在检测阶段通过自适应阈值分割和数学形态学处理获得最终检测结果。所提算法在公共数据集YDFID-1上实现了53.45%的准确率(precision,P)、61.58%的召回率(recall,R)、53.63%的分数(F1-measure,F1)和40.83%的平均交并比(intersection over union,IoU),在14个花型上实现了最佳的F1和IoU。对比实验结果表明,UAGAE算法相较于其他几种缺陷检测算法能够更好地完成色织物的缺陷检测与定位。The existing unsupervised deep learning algorithms based on auto-encoders and generative adversarial networks have problems such as poor generalizability,high missed and false detection rates in the defect detection task of yarn-dyed fabric.To address these issues,a yarn-dyed fabric defect detection algorithm based on U-shaped attention gate auto-encoder(UAGAE)is proposed.Firstly,the light weight network EfficientNet-B6 is employed as the feature extraction module to capture more representative features from input images.The introduced attention gate(AG)mechanism is used to suppress feature responses in non-target regions,leveraging decoder features as a reference to eliminate redundant information in skip connections,thereby aiding in image reconstruction.Subsequently,during the training phase,a combined loss function is utilized to preserve both the structure and details of the reconstructed images.Finally,during the detection phase,the ultimate detection results are obtained through adaptive threshold segmentation and mathematical morphology operations.The proposed algorithm achieves a precision(P)of 53.45%,recall(R)of 61.58%,F1-measure(F1)of 53.63%,and mean intersection over union(IoU)of 40.83%on the public dataset YDFID-1.Notably,it attains the highest Fl and IoU metrics across 14 different fabric patterns.The comparative experimental results indicate that the UAGAE algorithm,in comparison to several other defect detection algorithms,exhibits a superior capability in effectively performing yarn-dyed fabric defect detection and localization.

关 键 词:无监督深度学习 缺陷检测 注意力门(AG)机制 轻量化网络 图像重构 自适应阈值分割 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象