重污染天气特征分析及气温精细化预报方法研究  

Analysis of Heavy Pollution Weather Characteristics and Fine Temperature Prediction Method

在线阅读下载全文

作  者:严天凯 庞晶 陈紫嫣 吴建磊 王艺霖 Yan Tiankai;Pang Jing;Chen Ziyan;Wu Jianlei;Wang Yilin(Wuhan Meteorological Station,Wuhan 430000,China;Jiangxia District Meteorological Station,Wuhan 430000,China;Huanggang Meteorological Station,Huanggang 438000,China;Wuhan Public Meteorological Service Center,Wuhan 430000,China)

机构地区:[1]武汉市气象台,湖北武汉430000 [2]江夏区气象台,湖北武汉430000 [3]黄冈市气象台,湖北黄冈438000 [4]武汉市公共气象服务中心,湖北武汉430000

出  处:《环境科学与管理》2024年第8期140-144,共5页Environmental Science and Management

摘  要:重污染天气通常涉及颗粒物、臭氧等污染物,相互作用的复杂性使得预测重污染天气的气温的难度增加。为此,提出重污染天气特征分析及气温精细化预报方法。构建污染物扩散方程,分析空气污染物日变化、月变化、年变化特征;利用灰色关联分析方法分析重污染天气污染浓度与气象因子的相关性,通过降尺度技术实现气温精细化预报。实验结果表明,重污染天气的湿度、风速、降水量对污染物浓度的升降起决定性作用,验证了所提方法的天气特征分析准确性高,气温预报的效果好。Heavy pollution weather usually involves particles,ozone and other pollutants,and the complexity of their interaction makes it difficult to predict the temperature of heavy pollution weather.For this reason,the characteristics analysis of heavy pollution weather and the fine temperature forecast method are put forward.The air pollutant diffusion equation was constructed to analyze the characteristics of daily,monthly and annual variations of air pollutants.Grey correlation analysis is used to analyze the correlation between pollution concentration and meteorological factors in heavy pollution weather,and the refined temperature forecast is realized by downscaling technology.The experimental results show that the humidity,wind speed and precipitation of heavy pollution weather play a decisive role in the rise and fall of pollutant concentration,which verifies that the weather characteristics analysis accuracy of the proposed method is high,and the temperature forecast effect is good.

关 键 词:重污染天气特征 PM_(2.5) 臭氧 灰色关联分析方法 降尺度技术 

分 类 号:X831[环境科学与工程—环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象