Instability-Induced Origami Design by Topology Optimization  被引量:2

在线阅读下载全文

作  者:Weiwei Wang Ke Liu Meiqi Wu Hongyuan Li Pengyu Lv Huiling Duan 

机构地区:[1]State Key Laboratory for Turbulence and Complex Systems,Department of Mechanics and Engineering Science,BIC-ESAT,College of Engineering,Peking University,Beijing 100871,China [2]Department of Advanced Manufacturing and Robotics,College of Engineering,Peking University,Beijing 100871,China [3]CAPT,HEDPS and IFSA,Collaborative Innovation Center of MoE,Peking University,Beijing 100871,China

出  处:《Acta Mechanica Solida Sinica》2023年第4期506-513,共8页固体力学学报(英文版)

基  金:National Key Research and Development Program of China(2020YFE0204200,2022YFB4701900);National Natural Science Foundation of China(11988102,12202008);Experiments for Space Exploration Program and the Qian Xuesen Laboratory,China Academy of Space Technology(TKTSPY-2020-03-05).

摘  要:Instability-induced wrinkle patterns of thin sheets are ubiquitous in nature,which often result in origami-like patterns that provide inspiration for the engineering of origami designs.Inspired by instability-induced origami patterns,we propose a computational origami design method based on the nonlinear analysis of loaded thin sheets and topology optimization.The bar-and-hinge model is employed for the nonlinear structural analysis,added with a displacement perturbation strategy to initiate out-of-plane buckling.Borrowing ideas from topology optimization,a continuous crease indicator is introduced as the design variable to indicate the state of a crease,which is penalized by power functions to establish the mapping relationships between the crease indicator and hinge properties.Minimizing the structural strain energy with a crease length constraint,we are able to evolve a thin sheet into an origami structure with an optimized crease pattern.Two examples with different initial setups are illustrated,demonstrating the effectiveness and feasibility of the method.

关 键 词:Origami structure INSTABILITY Topology optimization Bar-and-hinge model 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象