An Optimal Volume Growth Estimate for Noncollapsed Steady Gradient Ricci Solitons  

在线阅读下载全文

作  者:Richard H.Bamler Pak-Yeung Chan Zilu Ma Yongjia Zhang 

机构地区:[1]Department of Mathematics,University of California Berkeley,Berkeley,CA,94720,USA [2]Department of Mathematics,University of California San Diego,La Jolla,CA,92093,USA [3]Department of Mathematics,Rutgers University,Piscataway,NJ,08854,USA [4]School of Mathematical Sciences,Shanghai Jiao Tong University,Shanghai,200240,China

出  处:《Peking Mathematical Journal》2023年第2期353-364,共12页北京数学杂志(英文)

基  金:R.H.Bamler was supported by NSF Grant DMS-1906500;Y.Zhang was supported by the starting-up grant of Shanghai Jiao Tong University.

摘  要:In this paper,we prove a volume growth estimate for steady gradient Ricci solitons with bounded Nash entropy.We show that such a steady gradient Ricci soliton has volume growth rate no smaller than r^n+1\2.This result not only improves the estimate in(Chan et al.,arXiv:2107.01419,2021,Theorem 1.3),but also is optimal since the Bryant soliton and Appleton’s solitons(Appleton,arXiv:1708.00161,2017)have exactly this growth rate.

关 键 词:Ricci flow Ricci soliton Singularity model 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象