检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Department of Mathematical Sciences,Tsinghua University,Beijing 100084,China
出 处:《Numerical Mathematics(Theory,Methods and Applications)》2023年第3期668-700,共33页高等学校计算数学学报(英文版)
基 金:supported by the National Natural Science Foundation of China(Grant No.72071119).
摘 要:Deep learning has achieved great success in solving partial differential equations(PDEs),where the loss is often defined as an integral.The accuracy and efficiency of these algorithms depend greatly on the quadrature method.We propose to apply quasi-Monte Carlo(QMC)methods to the Deep Ritz Method(DRM)for solving the Neumann problems for the Poisson equation and the static Schr¨odinger equation.For error estimation,we decompose the error of using the deep learning algorithm to solve PDEs into the generalization error,the approximation error and the training error.We establish the upper bounds and prove that QMC-based DRM achieves an asymptotically smaller error bound than DRM.Numerical experiments show that the proposed method converges faster in all cases and the variances of the gradient estimators of randomized QMC-based DRM are much smaller than those of DRM,which illustrates the superiority of QMC in deep learning over MC.
关 键 词:Deep Ritz method quasi-Monte Carlo Poisson equation static Schrodinger equation error bound
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117