检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Xiaolu Gu Juan Cheng Chi-Wang Shu
机构地区:[1]Graduate School,China Academy of Engineering Physics,Beijing 100088,China [2]Laboratory of Computational Physics,Institute of Applied Physics and Computational Mathematics,Beijing 100088,China [3]HEDPS,Center for Applied Physics and Technology,and College of Engineering,Peking University,Beijing 100871,China [4]Division of Applied Mathematics,Brown University,Providence,RI 02912
出 处:《Communications in Computational Physics》2023年第10期1177-1214,共38页计算物理通讯(英文)
基 金:supported in part by NSFC grant 12031001;National Key R&D Program of China No.2023YFA1009003;supported in part by NSF grant DMS-2010107.
摘 要:The arbitrary Lagrangian-Eulerian(ALE)method is widely used in the field of compressible multi-material and multi-phase flow problems.In order to implement the indirect ALE approach for the simulation of compressible flow in the context of high order discontinuous Galerkin(DG)discretizations,we present a high order positivity-preserving DG remapping method based on a moving mesh solver in this paper.This remapping method is based on the ALE-DG method developed by Klingenberg et al.[17,18]to solve the trivial equation∂u/∂t=0 on a moving mesh,which is the old mesh before remapping at t=0 and is the new mesh after remapping at t=T.An appropriate selection of the final pseudo-time T can always satisfy the relatively mild smoothness requirement(Lipschitz continuity)on the mesh movement velocity,which guarantees the high order accuracy of the remapping procedure.We use a multi-resolution weighted essentially non-oscillatory(WENO)limiter which can keep the essentially non-oscillatory property near strong discontinuities while maintaining high order accuracy in smooth regions.We further employ an effective linear scaling limiter to preserve the positivity of the relevant physical variables without sacrificing conservation and the original high order accuracy.Numerical experiments are provided to illustrate the high order accuracy,essentially non-oscillatory performance and positivity-preserving of our remapping algorithm.In addition,the performance of the ALE simulation based on the DG framework with our remapping algorithm is examined in one-and two-dimensional Euler equations.
关 键 词:REMAPPING discontinuous Galerkin method arbitrary Lagrangian-Eulerian high order accuracy multi-resolution WENO limiter positivity-preserving
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.129.89.50