Nonconforming Finite Elements for the -curlΔcurl and Brinkman Problems on Cubical Meshes  

在线阅读下载全文

作  者:Qian Zhang Min Zhang Zhimin Zhang 

机构地区:[1]Department of Mathematical Sciences,Michigan Technological University,Houghton,MI 49931,USA [2]Beijing Computational Science Research Center,Beijing,China [3]Department of Mathematics,Wayne State University,Detroit,MI 48202,USA

出  处:《Communications in Computational Physics》2023年第10期1332-1360,共29页计算物理通讯(英文)

基  金:supported in part by the National Natural Science Foundation of China grants NSFC 12131005 and NSAF U2230402.

摘  要:We propose two families of nonconforming elements on cubical meshes:one for the -curlΔcurl problem and the other for the Brinkman problem.The element for the -curlΔcurl problem is the first nonconforming element on cubical meshes.The element for the Brinkman problem can yield a uniformly stable finite element method with respect to the viscosity coefficient ν.The lowest-order elements for the -curlΔcurl and the Brinkman problems have 48 and 30 DOFs on each cube,respectively.The two families of elements are subspaces of H(curl;Ω)and H(div;Ω),and they,as nonconforming approximation to H(gradcurl;Ω)and[H^(1)(Ω)]^(3),can form a discrete Stokes complex together with the serendipity finite element space and the piecewise polynomial space.

关 键 词:Nonconforming elements -curlΔcurl problem Brinkman problem finite element de Rham complex Stokes complex 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象