On Single Distribution Lattice Boltzmann Schemes for the Approximation of Navier Stokes Equations  

在线阅读下载全文

作  者:Francois Dubois Pierre Lallemand 

机构地区:[1]Laboratoire de Mathematiques d’Orsay,Faculte des Sciences d’Orsay,Universite Paris-Saclay,France [2]Conservatoire National des Arts et Metiers,LMSSC laboratory,Paris,France [3]International Research Laboratory 3457,Centre National de la Recherche Scientifique,Centre de Recherches Mathematiques,Universite de Montreal,Montreal,QC,Canada [4]Beijing Computational Science Research Center,Haidian District,Beijing 100094,China

出  处:《Communications in Computational Physics》2023年第8期613-671,共59页计算物理通讯(英文)

摘  要:In this contribution we study the formal ability of a multi-resolution-times lattice Boltzmann scheme to approximate isothermal and thermal compressible Navier Stokes equations with a single particle distribution.More precisely,we consider a total of 12 classical square lattice Boltzmann schemes with prescribed sets of conserved and nonconserved moments.The question is to determine the algebraic expressions of the equilibrium functions for the nonconserved moments and the relaxation parameters associated to each scheme.We compare the fluid equations and the result of the Taylor expansion method at second order accuracy for bidimensional examples with a maximum of 17 velocities and three-dimensional schemes with at most 33 velocities.In some cases,it is not possible to fit exactly the physical model.For several examples,we adjust the Navier Stokes equations and propose nontrivial expressions for the equilibria.

关 键 词:Partial differential equations asymptotic analysis 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象