检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Francois Dubois Pierre Lallemand
机构地区:[1]Laboratoire de Mathematiques d’Orsay,Faculte des Sciences d’Orsay,Universite Paris-Saclay,France [2]Conservatoire National des Arts et Metiers,LMSSC laboratory,Paris,France [3]International Research Laboratory 3457,Centre National de la Recherche Scientifique,Centre de Recherches Mathematiques,Universite de Montreal,Montreal,QC,Canada [4]Beijing Computational Science Research Center,Haidian District,Beijing 100094,China
出 处:《Communications in Computational Physics》2023年第8期613-671,共59页计算物理通讯(英文)
摘 要:In this contribution we study the formal ability of a multi-resolution-times lattice Boltzmann scheme to approximate isothermal and thermal compressible Navier Stokes equations with a single particle distribution.More precisely,we consider a total of 12 classical square lattice Boltzmann schemes with prescribed sets of conserved and nonconserved moments.The question is to determine the algebraic expressions of the equilibrium functions for the nonconserved moments and the relaxation parameters associated to each scheme.We compare the fluid equations and the result of the Taylor expansion method at second order accuracy for bidimensional examples with a maximum of 17 velocities and three-dimensional schemes with at most 33 velocities.In some cases,it is not possible to fit exactly the physical model.For several examples,we adjust the Navier Stokes equations and propose nontrivial expressions for the equilibria.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222