检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郑超 张华民 ZHENG Chao;ZHANG Huamin(College of Mechanical Engineering,Anhui Science and Technology University,Fengyang 233100,China)
机构地区:[1]安徽科技学院机械工程学院,安徽凤阳233100
出 处:《荆楚理工学院学报》2024年第4期26-32,共7页Journal of Jingchu University of Technology
基 金:安徽省高校自然科学研究重点项目(KJ2019A0803);安徽省自然科学基金项目(1708085QF146)。
摘 要:目的:针对传统MobileNet-v2模型水稻叶面病害识别过程中出现的准确率低、运行速度慢、特征提取难等问题,提出一种基于改进MobileNet-v2轻量级网络的水稻叶面病害识别模型。方法:该模型采用增加注意力机制模块的结构方法增强图像的特征提取,然后将预训练好的权重参数迁移到改进的模型中,进而对水稻4种叶面病害进行识别研究。结果:该模型在50个epoch的训练测试过程中,训练速度和过拟合问题得到了较大的改善,最终测试识别准确率较传统MobileNet-v2模型准确率提高了7.97%。结论:该模型在水稻叶面病害识别中准确率较高,识别速度较快,为水稻叶面病害的识别与研究提供了参考和借鉴意义。Objective:To address the problem of the conventional MobileNet-v2 model in the recognition of rice leaf diseases,including its low recognition accuracy,sluggish running speed,and challenging feature extraction,a rice leaf disease recognition model based on improved MobileNet-v2 lightweight network was proposed.Methods:In this model,the method of adding attention mechanism module is used to enhance image feature extraction,and then the weight parameters of pre-trained model were transferred to the improved model to identify the four leaf diseases of rice.Results:The training speed and overfitting issues were significantly reduced throughout the training and testing of the new-mobile model over 50 epochs,and the final test recognition accuracy was 7.3%higher than that of the conventional MobileNet-v2 model.Conclusions:The new mobile model is more accurate and quicker in recognizing rice leaf diseases,which provides a reference and significance for identifying and researching of rice leaf diseases.
关 键 词:图像识别 水稻病害 迁移学习 MobileNet-v2
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49