Portable Perceptron Network-Based Fast Mode Decision for Video-Based Point Cloud Compression  

在线阅读下载全文

作  者:Shicheng Que Yue Li 

机构地区:[1]College of Computer Science,University of South China,Hengyang 421001,China

出  处:《CAAI Artificial Intelligence Research》2023年第1期83-90,共8页CAAI人工智能研究(英文)

基  金:supported by the National Natural Science Foundation of China(No.62001209).

摘  要:In Video-based Point Cloud Compression(V-PCC),2D videos to be encoded are generated by 3D point cloud projection,and compressed by High Efficiency Video Coding(HEVC).In the process of 2D video compression,the best mode of Coding Unit(CU)is searched by brute-force strategy,which greatly increases the complexity of the encoding process.To address this issue,we first propose a simple and effective Portable Perceptron Network(PPN)-based fast mode decision method for V-PCC under Random Access(RA)configuration.Second,we extract seven simple hand-extracted features for input into the PPN network.Third,we design an adaptive loss function,which can calculate the loss by allocating different weights according to different Rate-Distortion(RD)costs,to train our PPN network.Finally,experimental results show that the proposed method can save encoding complexity of 43.13%with almost no encoding efficiency loss under RA configuration,which is superior to the state-of-the-art methods.The source code is available at https://github.com/Mesks/PPNforV-PCC.

关 键 词:Video-based Point Cloud Compression(V-PCC) high efficiency video coding fast mode decision portable perceptron network 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象