噪声激励下的硬盘频响特性研究和性能预测模型  

Frequency response characteristics and performance prediction model of hard disk drive under noise excitation

在线阅读下载全文

作  者:陈强 王羽茜 刘广志[1] 吴安[2] 蒋少男 CHEN Qiang;WANG Yuxi;LIU Guangzhi;WU An;JIANG Shaonan(Inspur Electronic Information Industry Co.,Ltd.,Jinan 250013,China;Inspur(Beijing)Electronic Information Industry Co.,Ltd.,Beijing 100085,China)

机构地区:[1]浪潮电子信息产业股份有限公司,济南250013 [2]浪潮(北京)电子信息产业有限公司,北京100085

出  处:《振动与冲击》2024年第17期331-338,共8页Journal of Vibration and Shock

基  金:国家工信部项目(TC230A076-13)。

摘  要:针对服务器硬盘在高噪声环境下性能下降问题,设计了一种试验方法来分析噪声激励下硬盘性能损失的敏感度特性。通过编程模拟不同频率和强度的1/9倍频程带宽的均匀随机噪声,测试硬盘在噪声激励下产生的性能损失。通过机理分析和试验数据分析,建立回归方程,提出敏感度(K)的数学模型。建立了预测硬盘性能损失的数学模型,基于服务器机箱内散热风扇产生的真实噪声信号可计算出硬盘性能损失率。在多种场景的检验中发现预测模型的结果非常接近实际结果,证明此方法是一种非常准确的分析和预测手段,为服务器系统的声学设计提供有效的量化参考。Here,aiming at the problem of server hard disk drive performance dropping in high noise environment,an experimental method was designed to analyze frequency response characteristics of server hard disk drive under noise excitation.By programming to simulate uniform random noise of 1/9 octave bandwidth with different frequencies and intensities,the performance loss of hard disk drive under the above noise excitation was tested.Through mechanism analysis and experimental data analysis,a regression equation was established and a mathematical model for sensitivity(K)was proposed.On the other hand,the mathematical model to predict the performance loss of hard disk drive was established,and the performance loss rate of hard disk drive could be calculated based on real noise signals generated by cooling fan inside server chassis.Through testing in various scenarios,it was shown that the results of the prediction model are very close to the actual results,so the proposed method is a very correct analysis and prediction means to provide an effective quantitative reference for acoustic design of server systems.

关 键 词:噪声 硬盘(HOD) 风扇 性能预测 

分 类 号:TH212[机械工程—机械制造及自动化] TH213.3

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象