基于公平视角的交叉效率集结方法  

A cross-efficiency aggregation method based on fairness perspective

在线阅读下载全文

作  者:张兴贤 左文进 王应明[4] 王盼盼 王仁杰 ZHANG Xingxian;ZUO Wenjin;WANG Yingming;WANG Panpan;WANG Renjie(School of Management,Jiangsu University,Zhenjiang 212013,Jiangsu Province,China;School of Architecture and Engineering,Tongling University,Tongling 244061,Anhui Province,China;Zhejiang College,Shanghai University of Finance and Economics,Jinhua 321000,Zhejiang Province,China;Decision Sciences Institute,Fuzhou University,Fuzhou 350116,China)

机构地区:[1]江苏大学管理学院,江苏镇江212013 [2]铜陵学院建筑工程学院,安徽铜陵244061 [3]上海财经大学浙江学院,浙江金华321000 [4]福州大学决策科学研究所,福建福州350116

出  处:《浙江大学学报(理学版)》2024年第5期599-610,共12页Journal of Zhejiang University(Science Edition)

基  金:安徽省哲学社会科学规划项目(AHSKQ2019D024).

摘  要:针对数据包络分析(DEA)交叉效率的集结问题,基于公平视角提出了一种考虑公平感知的后悔交叉效率集结方法。用后悔理论描述决策者的后悔厌恶心理,构建后悔-欣喜矩阵;采用区间型交叉效率模型计算后悔公平感知效用;用构建的交叉效率集结权重分配模型,计算考虑公平感知的后悔区间交叉效率;通过引入反映决策者心理偏好的参数,综合后悔区间交叉效率的下限和上限形成综合感知效率。最后,通过算例验证了方法的有效性和合理性。Aiming at the aggregation problem of cross-efficiency in data envelopment analysis(DEA),this paper proposes a new regret cross-efficiency aggregation method based on fairness perception.Firstly,the regret theory is introduced to describe decision-makers'regret aversion,and the regret-rejoice matrix is constructed.Secondly,the intersectional cross-efficiency model is used to calculate the perceived utility of regret fairness.Then,a cross-efficiency aggregated weight distribution model is constructed and the cross-efficiency of regret interval considering fairness perception is calculated.The lower and upper limits of cross-efficiency of regret interval are synthesized by introducing a parameter reflecting the psychological preference of decision-makers.Finally,an example is given to verify the validity and rationality of the proposed method.

关 键 词:数据包络分析 交叉效率评估 公平视角 后悔理论 

分 类 号:N945.16[自然科学总论—系统科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象