检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:汪南洋 沈疆海[1] WANG Nan-yang;SHEN Jiang-hai(College of Computer Science,Yangtze University,Jingzhou 434023,China)
出 处:《科学技术与工程》2024年第24期10362-10369,共8页Science Technology and Engineering
基 金:新疆维吾尔自治区创新人才建设专项自然科学计划(2020D01A132);湖北省科技示范项目(2019ZYYD016);长江大学非常规油气合作创新中心项目(UOG2020-10)。
摘 要:岩心图像的孔洞分割对于石油勘探有着重要意义。当前基于深度学习的孔洞分割方法存在着孔洞边缘分割不连续、分割精度低和参数量大等问题,为解决上述问题,提出一种基于UNet网络的改进模型MSHAM-UNet。首先,针对UNet模型对不同尺度特征图的跳级连接带来的语义信息丢失问题,设计一种结合HAM(hybrid attention module)的多尺度融合注意力模块(multi-scale hybrid fusion attention module, MSHAM),该模块对带有空间信息的浅层特征图和含有语义信息的深层特征图进行注意力特征融合,增强网络聚合不同尺度信息的能力。其次,使用GP-bneck模块替换部分普通卷积,在降低模型参数量和加深网络的同时,增强网络特征提取能力。实验结果表明,MSHAM-UNet网络在岩心孔洞数据集上的F1分数(F1-score)、交并比(intersection over union, IoU)和平均交并比(mean intersection over union, MIoU)分别达到了87.35%、77.27%和90.21%,相较于原始模型提高了5.29%%、4.02%和4.84%,对比主流的语义分割模型也有较高提升,为岩心孔隙研究提供了新的思路。The hole segmentation of core images is important for oil exploration.In order to solve the problems of discontinuous hole edge segmentation,low segmentation accuracy and large number of parameters,an improved model based on UNet network MSHAMUNet was proposed.Firstly,aiming at the problem of semantic information loss caused by the hopping connection of UNet models to feature maps of different scales,a multi-scale hybrid fusion attention module(MSHAM)combined with a hybrid attention mechanism(HAM)was designed,which performed attention feature fusion on shallow feature maps with spatial information and deep feature maps with semantic information,so as to enhanced the ability of the network to aggregate information at different scales.Secondly,the GPbneck module was used to replace part of the ordinary convolution,which can reduce the number of model parameters and deepen the network,and enhance the network feature extraction ability.The experimental results show that the F1-score,intersection over union(IoU)and mean intersection over union(MIoU)of the MSHAM-UNet network on the core hole dataset reach 87.35%,77.27%and 90.21%,respectively,which are 5.29%,4.02%and 4.84%higher than the original model,and are also improved compared with the mainstream semantic segmentation model,which provides a new idea for core pore research.
关 键 词:岩心孔洞图像 深度学习 UNet模型 注意力机制 特征融合
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.230.215