Flame Morphology and Characteristic of Co-Firing Ammonia with Pulverized Coal on a Flat Flame Burner  

在线阅读下载全文

作  者:WANG Shengye CUI Mingshuang LIU Pengzhong DI Yi NIU Fang 

机构地区:[1]China Coal Research Institute,Beijing 100013,China [2]Beijing Tiandi Rongchuang Technology Co.Ltd.,Beijing 100013,China [3]National Energy Technology&Equipment Laboratory of Coal Utilization and Emission Control,Beijing 100013,China

出  处:《Journal of Thermal Science》2024年第5期1935-1945,共11页热科学学报(英文版)

基  金:supported by the Technology Innovation and Entrepreneurship Fund Key Project of Tiandi Technology Co.,Ltd.(2021-TD-ZD005)。

摘  要:Ammonia as a new green carbon free fuel co-combustion with coal can effectively reduce CO_(2)emission,but the research of flame morphology and characteristics of ammonia-coal co-combustion are not enough.In this work,we studied the co-combustion flame of NH_(3)and pulverized coal on flat flame burner under different oxygen mole fraction(X_(i,O_(2)))and NH_(3)co-firing energy ratios(E_(NH_(3))).We initially observed that the introduction of ammonia resulted in stratification within the ammonia-coal co-combustion flame,featuring a transparent flame at the root identified as the ammonia combustion zone.Due to challenges in visually observing the ignition of coal particles in the ammonia-coal co-combustion flame,we utilized Matlab software to analyze flame images across varying E_(NH_(3))and X_(i,O_(2)).The analysis indicates that,compared to pure coal combustion,the addition of ammonia advances the ignition delay time by 4.21 ms to 5.94 ms.As E_(NH_(3))increases,the ignition delay time initially decreases and then increases.Simultaneously,an increase in X_(i,O_(2))results in an earlier ignition delay time.The burn-off time and the flame divergence angle of pulverized coal demonstrated linear decreases and increases,respectively,with the growing ammonia ratio.The addition of ammonia facilitates the release of volatile matter from coal particles.However,in high-ammonia environments,oxygen consumption also impedes the surface reaction of coal particles.Finally,measurements of gas composition in the ammonia-coal flame flow field unveiled that the generated water-rich atmosphere intensified coal particle gasification,resulting in an elevated concentration of CO.Simultaneously,nitrogen-containing substances and coke produced during coal particle gasification underwent reduction reactions with NO_(x),leading to reduced NO_(x)emissions.

关 键 词:co-firing ammonia with coal flame characteristic gas component ignition delay time burn-off time flame divergence angle flat flame burner flame morphology 

分 类 号:TK16[动力工程及工程热物理—热能工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象