Ground Passive Microwave Remote Sensing of Atmospheric Profiles Using WRF Simulations and Machine Learning Techniques  

在线阅读下载全文

作  者:Lulu ZHANG Meijing LIU Wenying HE Xiangao XIA Haonan YU Shuangxu LI Jing LI 

机构地区:[1]Department of Atmospheric and Oceanic Sciences,School of Physics,Peking University,Beijing 100871 [2]Key Laboratory of Middle Atmosphere and Global Environment Observation(LAGEO),Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029 [3]University of Chinese Academy of Sciences,Beijing 101408

出  处:《Journal of Meteorological Research》2024年第4期680-692,共13页气象学报(英文版)

基  金:Supported by the National Natural Science Foundation of China (42175144)。

摘  要:Microwave radiometer(MWR) demonstrates exceptional efficacy in monitoring the atmospheric temperature and humidity profiles.A typical inversion algorithm for MWR involves the use of radiosonde measurements as the training dataset.However,this is challenging due to limitations in the temporal and spatial resolution of available sounding data,which often results in a lack of coincident data with MWR deployment locations.Our study proposes an alternative approach to overcome these limitations by harnessing the Weather Research and Forecasting(WRF) model's renowned simulation capabilities,which offer high temporal and spatial resolution.By using WRF simulations that collocate with the MWR deployment location as a substitute for radiosonde measurements or reanalysis data,our study effectively mitigates the limitations associated with mismatching of MWR measurements and the sites,which enables reliable MWR retrieval in diverse geographical settings.Different machine learning(ML) algorithms including extreme gradient boosting(XGBoost),random forest(RF),light gradient boosting machine(LightGBM),extra trees(ET),and backpropagation neural network(BPNN) are tested by using WRF simulations,among which BPNN appears as the most superior,achieving an accuracy with a root-mean-square error(RMSE) of 2.05 K for temperature,0.67 g m~(-3) for water vapor density(WVD),and 13.98% for relative humidity(RH).Comparisons of temperature,RH,and WVD retrievals between our algorithm and the sounding-trained(RAD) algorithm indicate that our algorithm remarkably outperforms the latter.This study verifies the feasibility of utilizing WRF simulations for developing MWR inversion algorithms,thus opening up new possibilities for MWR deployment and airborne observations in global locations.

关 键 词:microwave radiometer(MWR) Weather Research and Forecasting(WRF)model extreme gradient boosting(XGBoost) random forest(RF) light gradient boosting machine(LightGBM) extra trees(ET) backpropagation neural network(BPNN) monochromatic radiative transfer model(MonoRTM) 

分 类 号:P407[天文地球—大气科学及气象学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象