Improved lower bound for the complexity of unique shortest vector problem  

在线阅读下载全文

作  者:Baolong Jin Rui Xue 

机构地区:[1]State Key Laboratory of Information Security,Institute of Information Engineering,Chinese Academy of Sciences,Beijing 100085,China [2]School of Cyber Security,University of Chinese Academy of Sciences,Beijing 100049,China

出  处:《Cybersecurity》2024年第3期102-110,共9页网络空间安全科学与技术(英文)

基  金:This work is funded by National Natural Science Foundation of China(Grants No.62172405).

摘  要:Unique shortest vector problem(uSVP)plays an important role in lattice based cryptography.Many cryptographic schemes based their security on it.For the cofidence of those applications,it is essential to clarify the complex-ity of uSVP with different parameters.However,proving the NP-hardness of usVP appears quite hard.To the state of the art,we are even not able to prove the NP-hardness of usVP with constant parameters.In this work,we gave a lower bound for the hardness of usVP with constant parameters,i.e.we proved that uSVP is at least as hard as gap shortest vector problem(GapSVP)with gap of O(√n/log(n)),which is in NP n coAM.Unlike previous works,our reduction works for paramters in a bigger range,especially when the constant hidden by the big-O in GapsVP is smallerthan1.

关 键 词:Computational complexity Unique shortest vector problem Bounded distance decoding Complexity reduction 

分 类 号:TP309.7[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象