融合等维新息的灰色马尔科夫模型的地铁中长期客流量预测  

Medium and Long-Term Subway Passenger Flow Prediction Based on a Grey Markov Model with Integrated Equi-Dimensional Information

在线阅读下载全文

作  者:谢勇锋 干宏程[1,2] 王可 Yongfeng Xie;Hongcheng Gan;Ke Wang(Business School,University of Shanghai for Science and Technology,Shanghai;Center for Supernetworks Research,University of Shanghai for Science and Technology,Shanghai)

机构地区:[1]上海理工大学管理学院,上海 [2]上海理工大学超网络研究中心,上海

出  处:《运筹与模糊学》2024年第4期180-190,共11页Operations Research and Fuzziology

基  金:国家自然科学基金(71871143);上海“科技创新行动计划”社会发展科技攻关项目(22dz1203405);教育部人文社科青年基金项目(22YJC790189)。

摘  要:地铁中长期客流量预测在单一模型中很难同时满足数据的稳定性、周期性等特征导致其预测结果较差。针对中长期客流预测精度较低的问题,本文使用融合等维新息的灰色模型与马尔科夫模型组合的地铁客流预测模型。首先对原始数据序列进行预处理,其次建立灰色GM(1,1)模型并融合等维新息的思想来提高中长期预测精度。然后将马尔科夫链纳入融合等维新息的灰色模型来修正残差。最后,选用2013~2019年上海地铁日均客流量进行预测,结果表明融合等维新息的灰色马尔科夫模型在地铁中长期客流量预测精度为I级(优),高于单一模型。Medium and long-term subway passenger flow prediction in a single model is difficult to simulta-neously satisfy the stability of data,periodicity and other characteristics leading to its poor pre-diction results.In response to the issue of low accuracy in medium and long-term subway passen-ger flow prediction,a grey Markov model with integrated equi-dimensional information is pro-posed for prediction.Firstly,the original data sequence is preprocessed;then,followed by the es-tablishment of a grey GM(1,1)model which is improved using the equi-dimensional information concept;next,the Markov chain is incorporated into the grey model with integrated equidimen-sional information to correct the residual.The proposed method is experimented using daily pas-senger flow data from Shanghai subway between 2013 and 2019.The results show that the im-plementability and advantages of the grey Markov model incorporate equi-dimensional new in-formation in the application of metro passenger flow prediction in the medium and long term.

关 键 词:等维新息 灰色GM(1 1) 马尔科夫链 中长期客流量预测 

分 类 号:U23[交通运输工程—道路与铁道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象