检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:凌先冲 丁绍强 Xianchong Ling;Shaoqiang Ding(School of Economics,Nanjing University of Posts and Telecommunications,Nanjing Jiangsu)
机构地区:[1]南京邮电大学经济学院,江苏南京
出 处:《运筹与模糊学》2024年第4期300-308,共9页Operations Research and Fuzziology
摘 要:量化投资是一种基于大数据和数字化技术的投资理念,它通过利用计算机模型、复杂算法等技术手段,对市场数据进行预测和分析,制定自动化的投资策略。本文基于均线与K线两个基本的选股指标,构建均线回归策略与K线形态捕捉策略相结合的选股模型:当探测到某支股票的股价低于5日均价的0.95倍,且捕获到所设定的K线为上涨形态时就买入;当所持有的股票价格高于5日均价的1.05倍或者捕获到所设定的K线为下跌形态时就卖出。利用聚宽(JoinQuant)所提供的量化环境,对2022年1月1日至2022年12月31日一整年的A股市场进行回测,最终共交易138笔,实现超额收益19.12%。本文同时对策略回测结果进行了分析,并就单独个案进行了详细的阐释。文章最后提出了优化与改进策略的方法,为此策略应用于股票的预测与投资提供了参考。Quantitative investment is an investment concept based on big data and digital technology.It uses computer models,complex algorithms and other technical means to forecast and analyze market data and develop automated investment strategies.Based on two basic stock selection indicators,the paper constructs a stock selection model combining the regression strategy of the moving av-erage and the K-line pattern capture strategy.When the stock price is lower than 0.95 times of the 5-day average price and the K-line rise pattern is captured,the stock will be bought.Sell when the stock price is higher than 1.05 times the 5-day average price or captures the set K-line decline pattern.Using the quantitative environment provided by JoinQuant,the A-share market for the whole year from January 1,2022 to December 31,2022 was backtested,with a total of 138 trans-actions and an excess return of 19.12%.At the same time,the results of the strategy backtest are analyzed,and the individual cases are explained in detail.Finally,the paper puts forward the method of optimizing and improving the strategy,which provides a reference for the application of the strategy to stock prediction and investment.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.117.249.37