检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈梦婷 裴训龙 李登辉 Mengting Chen;Xunlong Pei;Denghui Li(School of Mathematics and Statistics,Nanjing University of Information Science and Technology(NUIST),Nanjing Jiangsu)
出 处:《运筹与模糊学》2024年第4期342-357,共16页Operations Research and Fuzziology
摘 要:本文研究的是一类具有有限和形式的DC问题,其目标函数为具有有限和形式的光滑凸函数与连续凸函数之和再减去适当的闭凸函数的形式。传统的邻近DC算法(pDCA)在处理此类问题时,由于每一迭代步都需要对目标函数光滑部分的全梯度进行计算,从而导致计算成本较为昂贵,因此本文将随机梯度SARAH引入到pDCA中,提出了一种基于随机梯度SARAH的随机邻近DC算法(pDCA-SARAH),并给出了该算法的具体迭代格式,以降低计算成本。在非凸情形下,本文针对pDCA-SARAH算法给出了收敛性及收敛率分析。具体的,本文给出了目标函数在期望意义下的下降量分析以及次线性收敛率的结果。最后,通过将pDCA-SARAH算法用于求解l1-2正则化最小二乘问题,并与pDCA进行数值比较,展示了本文所提算法的高效性。In this paper,we study a class of DC problems with finite sum form,whose objective function is the sum of smooth convex function and continuous convex function with finite sum form,minus the appropriate closed convex function.When dealing with this kind of problems,the traditional proximal difference-of-convex algorithm(pDCA)needs to calculate the full gradient of the smooth part of the objective function at each iterative step,so the computational cost is expensive.In this paper,stochastic gradient SARAH is introduced into pDCA,a stochastic proximal DC algorithm(pDCA-SARAH)based on stochastic gradient SARAH is proposed,and the specific iterative scheme of the algorithm is given to reduce the computational cost.In the non-convex case,the convergence and convergence rate analysis of pDCA-SARAH algorithm are given in this paper.Specifically,this paper gives the analysis of the decline of the objective function in the sense of expectation and the results of sublinear convergence rate.Finally,the pDCA-SARAH algorithm is applied to solve the l1-2 regu-larized least square problem,and compared with pDCA,the efficiency of the proposed algorithm is demonstrated.
关 键 词:DC问题 随机梯度 l_(1-2)正则化最小二乘问题
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.190.152.131