基于SOA的光子脉冲LIF神经元研究  

Research of the photon pulse LIF neurons based on SOA

在线阅读下载全文

作  者:薛利梅 魏艳龙 杨潞霞 阴桂梅[1,3] 马会芳 韩丙辰[2,3] XUE Limei;WEI Yanlong;YANG Luxia;YIN Guimei;MA Huifang;HAN Bingchen(Department of Computer Science and Technology,Taiyuan Normal University,Jinzhong Shanxi 030600,China;Department of Physics,Taiyuan Normal University,Jinzhong Shanxi 030600,China;Shanxi Key Laboratory for Intelligent Optimization Computing and Blockchain Technology,Jinzhong Shanxi 030600,China)

机构地区:[1]太原师范学院计算机科学与技术学院,山西晋中030600 [2]太原师范学院物理系,山西晋中030600 [3]智能优化计算与区块链技术山西省重点实验室,山西晋中030600

出  处:《激光杂志》2024年第8期110-114,共5页Laser Journal

基  金:山西省科技战略研究专项(No.202204031401114);山西省青年科学研究项目(No.202203021212185);山西省重点研发计划(No.202102010101008)。

摘  要:脉冲神经网络与传统人工神经网络相比,具有硬件友好性和低能耗的优点。而光子脉冲神经网络与电脉冲神经网络相比具有速度快、能耗低、传输容量大和抗电磁干扰能力强等优点。基于半导体光放大器(SOA)设计了一种新的光子脉冲神经元模型—LIF(泄漏积分与发射)模型,实现了信号的加权、延迟、积分和阈值判决等功能,并在此基础上探索了该LIF模型在数字逻辑中的应用。实现了基于该模型的“异或”逻辑功能,并改进了一种具有兴奋性和抑制性神经元,通过光通信仿真软件得到LIF模型、“异或”逻辑和具有兴奋性和抑制性神经元良好的输出。Compared with the traditional artificial neural network,pulse neural network has the advantages of hardware-friendliness and low energy consumption.Compared with the electric pulse neural network,the photon pulse neural network has the advantages of high speed,low energy consumption,large transmission capacity and strong anti-electromagnetic interference ability.Based on the semiconductor optical amplifier(SOA),a new neuron model of photon pulse—LIF(leakage integration and fire)model is designed in this paper,and the application of LIF model in digital logic is explored.The“XOR”logic function based on the model is realized,and an excitatory and inhibitory neuron is improved,LIF model,XOR logic and good output of excitatory and inhibitory neurons were obtained by optical communication simulation software.

关 键 词:光通信 全光逻辑 LIF神经元(leakage integration and fire) 光子脉冲神经元 

分 类 号:TN929[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象