检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李淇 石艳 范桃 LI Qi;SHI Yan;FAN Tao(School of Mechanical Engineering,Sichuan University of Science&Engineering,Yibin,Sichuan 644000,China)
机构地区:[1]四川轻化工大学机械工程学院,四川宜宾644000
出 处:《计算机工程与应用》2024年第18期126-135,共10页Computer Engineering and Applications
基 金:四川省科技计划重点研发项目(2022YFG0068);四川省大学生创新创业项目(CX2023074)。
摘 要:针对O型密封圈表面缺陷尺度小且缺陷特征与背景相似性高,存在特征提取困难等问题与工业实时检测的需求,提出一种改进YOLOv8n的YOLO-Oring算法。在卷积计算的基础上,融入线性变化,设计新的CBLGhost模块,减小计算特征图所需的计算资源;针对缺陷与背景相似度高,引入DySample轻量动态上采样模块,使采样点集中在目标区域而忽略背景部分,实现缺陷的有效识别;为提高检测效率,设计C2f-OREPA模块,将复杂的结构重参数转为单卷积层,在保持特征表达能力的同时降低大量训练耗时;为提高算法对小尺度缺陷识别能力,设计DyHeadDCNv3检测头,用于识别多尺度目标,弥补传统标准卷积在长距离建模能力和自适应空间聚合能力上的不足,从而更好地完成检测任务。由于O型密封圈检测数据集缺乏,建立了包括划痕、凹陷、毛刺3类缺陷的1 734张数据集,实验结果表明,YOLO-Oring算法的mAP达到了94.1%,提升了1.3个百分点,FLOPs降低了16%。通过与主流目标检测算法进行比较,结果表明YOLO-Oring算法对O型密封圈表面缺陷有较好的检测性能,更利于工业实时检测。Aiming at the problems such as small surface defect scale,high similarity between defect features and back-ground,difficulty in feature extraction and the needs of industrial real-time detection,an improved YOLOv8n YOLO-Oring algorithm is proposed.On the basis of convolution calculation,a new CBLGhost module is designed by incorporating linear changes to reduce the computational resources required for calculating feature graphs.In view of the high similarity between defects and background,the DySample dynamic up-sampling module is introduced to make the sampling points concentrate in the target area and ignore the background part,so as to realize the effective identification of defects.In order to improve the detection efficiency,the C2f-OREPA module is designed to convert the complex structural reparameters into a single convolution layer,which can reduce a lot of training time while maintaining the feature expression ability.In order to improve the ability of algorithm to identify small-scale defects,DyHead-DCNv3 detection head is designed to identify multi-scale targets,and make up for the shortcomings of traditional standard convolution in long-distance modeling ability and adaptive spatial aggregation ability,so as to better complete the detection task.Due to the lack of O-ring detec-tion dataset,1734 datasets including 3 types of defects,such as scratches,dents and burrs,are established.Experimental results show that the mAP of YOLO-Oring algorithm reaches 94.1%,increasing by 1.3 percentage points,and FLOPs has decreased by 16%.Compared with mainstream target detection algorithms,the results show that YOLO-Oring algo-rithm has better detection performance for O-ring surface defects and is more conducive to industrial real-time detection.
关 键 词:缺陷检测 YOLOv8 O型密封圈 DySample
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49