检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王露露 徐增敏 张雪莲[1,2] 蒙儒省 卢涛 WANG Lulu;XU Zengmin;ZHANG Xuelian;MENG Ruxing;LU Tao(Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation,School of Mathematics and Computing Science,Guilin University of Electronic Technology,Guilin,Guangxi 541004,China;Center for Applied Mathematics of Guangxi(GUET),Guilin,Guangxi 541004,China;Anview.ai,Guilin,Guangxi 541010,China;Hubei Key Laboratory of Intelligent Robot,School of Computer Science and Engineering,Wuhan Institute of Technology,Wuhan 430205,China)
机构地区:[1]桂林电子科技大学数学与计算科学学院广西高校数据分析与计算重点实验室,广西桂林541004 [2]广西应用数学中心(桂林电子科技大学),广西桂林541004 [3]桂林安维科技有限公司,广西桂林541010 [4]武汉工程大学计算机科学与工程学院智能机器人湖北省重点实验室,武汉430205
出 处:《计算机工程与应用》2024年第18期158-166,共9页Computer Engineering and Applications
基 金:广西自然科学基金(2024GXNSFAA010493);国家自然科学基金(61862015,62072350);广西科技基地和人才专项(AD23023002,AD21220114);广西重点研发计划项目(AB17195025)。
摘 要:现有的自监督表征算法主要关注视频帧之间的短期运动特性,但是帧间动作序列的变化幅度较小,而且单视图数据因语义受限影响深度特征表达能力,视频动作中丰富的多视图信息未被充分利用。为此提出基于跨视图语义一致性的时序对比学习算法,自监督学习RGB帧和光流场两种数据中蕴含的动作时序变化特性,主要思路为:设计局部时序对比学习方法,采用不同正负样本划分策略,挖掘同一实例不重叠片段之间的时序相关性和判别可分性,增强细粒度特征表达能力;研究全局对比学习方法,通过跨视图语义协同训练来增加正样本,学习多实例不同视图的语义一致性,提高模型的泛化能力。通过两个下游任务对模型效果进行评估,在UCF101和HMDB51数据集的实验结果表明,所提方法在动作识别和视频检索任务上,较前沿主流方法平均提升了2~3.5个百分点。The existing self-supervised representation algorithms mainly focus on the short-term motion characteristics between video frames,but the variation range of the action sequence between frames is small,and the depth feature expression ability of single-view data is affected due to semantic limitations,so the rich multi-view information in video actions is not fully utilized.Therefore,a temporal contrast learning algorithm based on cross-view semantic consistency is proposed to self-supervised learn the action temporal variation characteristics embedded in both RGB frames and optical flow field data.The main ideas are as follows:to design a local temporal contrast learning method,adopt different posi-tive and negative sample division strategies to explore the temporal correlation and discriminative differentiability between non-overlapping segments of the same instance,and enhance the fine-grained feature expression capability;to study the global contrast learning method to increase the positive samples by cross-view semantic co-training,learn the semantic consistency of different views of multiple instances,and improve the generalization ability of the model.The model per-formance is evaluated through two downstream tasks,and the experimental results on UCF101 and HMDB51 datasets show that the proposed method improves on average 2~3.5 percentage points over cutting-edge mainstream methods on action recognition and video retrieval tasks.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.48