检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴超[1,2] 周紫静 黄锦铧 许啸寅 邱洪[1,2] 彭业萍 WU Chao;ZHOU Zijing;HUANG Jinhua;XU Xiaoyin;QIU Hong;PENG Yeping(College of Mechatronics and Control Engineering,Shenzhen University,Shenzhen 518060,Guangdong Province,P.R.China;Guangdong Key Laboratory of Electromagnetic Control and Intelligent Robots,Shenzhen University,Shenzhen 518060,Guangdong Province,P.R.China)
机构地区:[1]深圳大学机电与控制工程学院,广东深圳518060 [2]深圳大学广东省电磁控制与智能机器人重点实验室,广东深圳518060
出 处:《深圳大学学报(理工版)》2024年第5期563-573,共11页Journal of Shenzhen University(Science and Engineering)
基 金:广东省自然科学基金资助项目(2024a1515030208);深圳市国际科技合作资助项目(GJHZ20220913143005009)。
摘 要:针对传统温室农作物生长监控系统控制灵活性差且精确度低等问题,设计了一个面向智慧农业的农作物生长闭环监控系统.引入单变量长短时记忆(long short-term memory,LSTM)网络模型,对土壤含水率、土壤温度和土壤电导率3个农作物生长环境数据进行预测研究.在优化时间步长参数的基础上,分析不同预测步长对单变量LSTM模型预测准确性的影响,采用不同时间段的测试集数据对模型的预测性能和稳定性进行验证.分别采用单变量LSTM模型、最小绝对值收敛和选择算法、随机森林回归、双向LSTM模型和编解码LSTM模型进行预测对比,结果表明,单变量LSTM模型预测的平均绝对误差值和均方根误差值均为最小,模型具有更好的准确性和稳定性.本研究设计的农作物生长闭环监控系统能有效预测农作物的生长环境数据,为农作物监控系统的智能控制提供有效数据支撑.Traditional greenhouse crop growth monitoring system has the disadvantages of poor control flexibility and low accuracy.To address these issues,this paper focuses on developing a closed-loop crop growth monitoring system for purpose of smart agriculture and employing the univariate long short-term memory(LSTM)prediction model for the crop growth environmental data prediction.Based on optimizing the time-step parameter,the prediction accuracy of the univariate LSTM prediction model conducted with different prediction steps was discussed.Then the model stability was verified by using the testing datasets of different time periods.Finally,the prediction results obtained from the proposed method were compared with those obtained from least alosolute shrinkage and selection operator(LASSO),random forest regression,bidirectional LSTM,and encoder-decoder LSTM.The experimental results show that the univariate LSTM has better prediction accuracy and stability in comparison with other prediction models.The designed closed-loop crop growth monitoring system can effectively predict the environmental data,which can provide effective data support for the intelligent control of crop monitoring system.
关 键 词:人工智能 监控系统 预测模型 环境数据 长短时记忆网络 时间序列 智慧农业
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程] TP274[自动化与计算机技术—控制科学与工程] S126[农业科学—农业基础科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117