Sequential good lattice point sets for computer experiments  

在线阅读下载全文

作  者:Xue-Ru Zhang Yong-Dao Zhou Min-Qian Liu Dennis K.J.Lin 

机构地区:[1]NITFID,LPMC&KLMDASR,School of Statistics and Data Science,Nankai University,Tianjin 300071,China [2]Department of Statistics,Purdue University,West Lafayette,IN 47907,USA

出  处:《Science China Mathematics》2024年第9期2153-2170,共18页中国科学(数学)(英文版)

基  金:supported by National Natural Science Foundation of China(Grant Nos.11871288,12131001,and 12226343);National Ten Thousand Talents Program;Fundamental Research Funds for the Central Universities;China Scholarship Council;U.S.National Science Foundation(Grant No.DMS18102925)。

摘  要:Sequential Latin hypercube designs(SLHDs) have recently received great attention for computer experiments, with much of the research restricted to invariant spaces. The related systematic construction methods are inflexible, and algorithmic methods are ineffective for large designs. For designs in contracting spaces, systematic construction methods have not been investigated yet. This paper proposes a new method for constructing SLHDs via good lattice point sets in various experimental spaces. These designs are called sequential good lattice point(SGLP) sets. Moreover, we provide efficient approaches for identifying the(nearly)optimal SGLP sets under a given criterion. Combining the linear level permutation technique, we obtain a class of asymptotically optimal SLHDs in invariant spaces, where the L1-distance in each stage is either optimal or asymptotically optimal. Numerical results demonstrate that the SGLP set has a better space-filling property than the existing SLHDs in invariant spaces. It is also shown that SGLP sets have less computational complexity and more adaptability.

关 键 词:contracting space maximin distance nested Latin hypercube design sequential design space-fillingdesign 

分 类 号:O157.2[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象