检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:DU Shen LI Dong LI MengJie HE YaLing
出 处:《Science China(Technological Sciences)》2024年第9期2749-2757,共9页中国科学(技术科学英文版)
基 金:supported by the National Natural Science Foundation of China(Grant Nos.52341601 and 52306272);the Postdoctoral Research Project Funding in Shaanxi Province(Grant No.2023BSHYDZZ40)。
摘 要:Morphologies of the porous materials influence the processes of solar radiation transport, flow, and thermal behaviors within volumetric solar receivers. A comprehensive comparative study is conducted by applying pore scale numerical simulations on volumetric solar receivers featuring various morphologies, including Kelvin, Weaire-Phelan, and foam configurations. The idealized unit cell and X-ray computed tomography scan approaches are employed to reconstruct pore scale porous models.Monte Carlo ray tracing and pore scale numerical simulations are implemented to elucidate the radiative, flow, and thermal behaviors of distinct receivers exposed to varying thermal boundary conditions and real irradiation situations. The findings demonstrate that the foam structure exhibits greater solar radiation absorptivity, while Kelvin and Weaire-Phelan structures enhance the penetration depth under non-perpendicular solar irradiation. In comparison with Kelvin and Weaire-Phelan configurations, the foam structure presents efficient convective heat transfer, with the Weaire-Phelan structure showing pronounced thermal non-equilibrium phenomena. The variance in convective heat transfer coefficient between Kelvin and Weaire-Phelan configurations is approximately 8.4%. The foam structure exhibits higher thermal efficiency and flow resistance under nonperpendicular irradiation compared to Kelvin and Weaire-Phelan structures, attributed to its smaller pore size and intricate flow channels. An increase of 1.3% in thermal efficiency is observed with a substantial rise in pressure drop of 32.2%.
关 键 词:volumetric solar receiver porous morphology pore scale method solar radiation absorption thermal performance flow resistance
分 类 号:TK513.3[动力工程及工程热物理—热能工程] TB383.4[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.106