检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:ZHONG Tao QIN ChengJin SHI Gang ZHANG ZhiNan TAO JianFeng LIU ChengLiang
出 处:《Science China(Technological Sciences)》2024年第8期2594-2618,共25页中国科学(技术科学英文版)
基 金:supported by the National Natural Science Foundation of China(Grant No.52375255);Shanghai Municipal Science and Technology Major Project(Grant No.2021SHZDZX0102)。
摘 要:As a critical component of a tunnel boring machine(TBM),the precise condition monitoring and fault analysis of the main bearing is essential to guarantee the safety and efficiency of the TBM cutter drive.Currently,under conditions of strong noise and complex working environments,traditional signal decomposition and machine learning methods struggle to extract weak fault features and achieve high fault classification accuracy.To address these issues,we propose a novel residual denoising and multiscale attention-based weighted domain adaptation network(RDMA-WDAN)for TBM main bearing fault diagnosis.Our approach skillfully designs a deep feature extractor incorporating residual denoising and multiscale attention modules,achieving better domain adaptation despite significant domain interference.The residual denoising component utilizes a convolutional block to extract noise features,removing them via residual connections.Meanwhile,the multiscale attention module uses a 4-branch convolution and 3 pooling strategy-based channel–spatial attention mechanism to extract multiscale features,concentrating on deep fault features.During training,a weighting mechanism is introduced to prioritize domain samples with clear fault features.This optimizes the deep feature extractor to obtain common features,enhancing domain adaptation.A low-speed and heavy-loaded bearing testbed was built,and fault data sets were established to validate the proposed method.Comparative experiments show that in noise domain adaptation tasks,proposed the RDMA–WDAN significantly improves target domain classification accuracy by 42.544%,23.088%,43.133%,16.344%,5.022%,and 9.233%over dense connection network(DenseNet),squeeze–excitation residual network(SE-ResNet),antinoise multiscale convolutional neural network(ANMSCNN),multiscale attention module-based convolutional neural network(MSAMCNN),domain adaptation network,and hybrid weighted domain adaptation(HWDA).In combined noise and working condition domain adaptation tasks,the RDMA–WDAN improves t
关 键 词:tunnel boring machine(TBM) main bearing fault diagnosis domain adaptation antinoise cross working RDMA-WDAN
分 类 号:U455.3[建筑科学—桥梁与隧道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.248