Relative difficulty distillation for semantic segmentation  

在线阅读下载全文

作  者:Dong LIANG Yue SUN Yun DU Songcan CHEN Sheng-Jun HUANG 

机构地区:[1]MIIT Key Laboratory of Pattern Analysis and Machine Intelligence,College of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China [2]Shenzhen Research Institute,Nanjing University of Aeronautics and Astronautics,Shenzhen 518000,China

出  处:《Science China(Information Sciences)》2024年第9期122-141,共20页中国科学(信息科学)(英文版)

基  金:partly supported by National Natural Science Foundation of China(Grant Nos.62272229,62076124,62222605);National Key R&D Program of China(Grant No.2020AAA0107000);Natural Science Foundation of Jiangsu Province(Grant Nos.BK20222012,BK20211517);Shenzhen Science and Technology Program(Grant No.JCYJ20230807142001004)。

摘  要:Current knowledge distillation(KD)methods primarily focus on transferring various structured knowledge and designing corresponding optimization goals to encourage the student network to imitate the output of the teacher network.However,introducing too many additional optimization objectives may lead to unstable training,such as gradient conflicts.Moreover,these methods ignored the guidelines of relative learning difficulty between the teacher and student networks.Inspired by human cognitive science,in this paper,we redefine knowledge from a new perspective—the student and teacher networks'relative difficulty of samples,and propose a pixel-level KD paradigm for semantic segmentation named relative difficulty distillation(RDD).We propose a two-stage RDD framework:teacher-full evaluated RDD(TFE-RDD)and teacher-student evaluated RDD(TSE-RDD).RDD allows the teacher network to provide effective guidance on learning focus without additional optimization goals,thus avoiding adjusting learning weights for multiple losses.Extensive experimental evaluations using a general distillation loss function on popular datasets such as Cityscapes,Cam Vid,Pascal VOC,and ADE20k demonstrate the effectiveness of RDD against state-ofthe-art KD methods.Additionally,our research showcases that RDD can integrate with existing KD methods to improve their upper performance bound.Codes are available at https://github.com/sunyueue/RDD.git.

关 键 词:knowledge distillation semantic segmentation relative difficulty sample weighting prediction discrepancy 

分 类 号:TP391.1[自动化与计算机技术—计算机应用技术] TP18[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象