检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:YANBO JIN LINPENG LU SHUN ZHOU JIE ZHOU YAO FAN CHAO ZUO
机构地区:[1]Smart Computational Imaging Laboratory(SCILab),School of Electronic and Optical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China [2]Smart Computational Imaging Research Institute(SCIRI)of Nanjing University of Science and Technology,Nanjing 210019,China [3]Jiangsu Key Laboratory of Spectral Imaging&Intelligent Sense,Nanjing 210094,China
出 处:《Photonics Research》2024年第7期1494-1501,共8页光子学研究(英文版)
基 金:National Natural Science Foundation of China(62227818, 62105151, 62175109, U21B2033);National Key Research and Development Program of China(2022YFA1205002);Leading Technology of Jiangsu Basic Research Plan (BK20192003);Youth Foundation of Jiangsu Province (BK20210338);Biomedical Competition Foundation of Jiangsu Province (BE2022847);Key National Industrial Technology Cooperation Foundation of Jiangsu Province (BZ2022039);Fundamental Research Funds for the Central Universities (30920032101, 30923010206);Fundamental Scientific Research Business Fee Funds for the Central Universities (2023102001);Open Research Fund of Jiangsu Key Laboratory of Spectral Imaging Intelligent Sense(JSGP202105, JSGP202201)。
摘 要:The transport-of-intensity equation(TIE) enables quantitative phase imaging(QPI) under partially coherent illumination by measuring the through-focus intensities combined with a linearized inverse reconstruction algorithm. However, overcoming its sensitivity to imaging settings remains a challenging problem because of the difficulty in tuning the optical parameters of the imaging system accurately and because of the instability to long-time measurements. To address these limitations, we propose and experimentally validate a solution called neural-field-assisted transport-of-intensity phase microscopy(NFTPM) by introducing a tunable defocus parameter into neural field. Without weak object approximation, NFTPM incorporates the physical prior of partially coherent image formation to constrain the neural field and learns the continuous representation of phase object without the need for training. Simulation and experimental results of He La cells demonstrate that NFTPM can achieve accurate, partially coherent QPI under unknown defocus distances, providing new possibilities for extending applications in live cell biology.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.142.242.51