Neural-field-assisted transport-of-intensity phase microscopy: partially coherent quantitative phase imaging under unknown defocus distance  被引量:3

在线阅读下载全文

作  者:YANBO JIN LINPENG LU SHUN ZHOU JIE ZHOU YAO FAN CHAO ZUO 

机构地区:[1]Smart Computational Imaging Laboratory(SCILab),School of Electronic and Optical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China [2]Smart Computational Imaging Research Institute(SCIRI)of Nanjing University of Science and Technology,Nanjing 210019,China [3]Jiangsu Key Laboratory of Spectral Imaging&Intelligent Sense,Nanjing 210094,China

出  处:《Photonics Research》2024年第7期1494-1501,共8页光子学研究(英文版)

基  金:National Natural Science Foundation of China(62227818, 62105151, 62175109, U21B2033);National Key Research and Development Program of China(2022YFA1205002);Leading Technology of Jiangsu Basic Research Plan (BK20192003);Youth Foundation of Jiangsu Province (BK20210338);Biomedical Competition Foundation of Jiangsu Province (BE2022847);Key National Industrial Technology Cooperation Foundation of Jiangsu Province (BZ2022039);Fundamental Research Funds for the Central Universities (30920032101, 30923010206);Fundamental Scientific Research Business Fee Funds for the Central Universities (2023102001);Open Research Fund of Jiangsu Key Laboratory of Spectral Imaging Intelligent Sense(JSGP202105, JSGP202201)。

摘  要:The transport-of-intensity equation(TIE) enables quantitative phase imaging(QPI) under partially coherent illumination by measuring the through-focus intensities combined with a linearized inverse reconstruction algorithm. However, overcoming its sensitivity to imaging settings remains a challenging problem because of the difficulty in tuning the optical parameters of the imaging system accurately and because of the instability to long-time measurements. To address these limitations, we propose and experimentally validate a solution called neural-field-assisted transport-of-intensity phase microscopy(NFTPM) by introducing a tunable defocus parameter into neural field. Without weak object approximation, NFTPM incorporates the physical prior of partially coherent image formation to constrain the neural field and learns the continuous representation of phase object without the need for training. Simulation and experimental results of He La cells demonstrate that NFTPM can achieve accurate, partially coherent QPI under unknown defocus distances, providing new possibilities for extending applications in live cell biology.

关 键 词:field COHERENT PHASE 

分 类 号:O439[机械工程—光学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象