检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yu-Zhe Wang Zhuo-Liang Jiang Bo Wen Yao-Hui Huang Fu-Jun Li 王昱喆;蒋卓良;温波;黄耀辉;李福军(南开大学化学学院,先进能源材料化学教育部重点实验室,天津300071;天津物质绿色创造与制造海河实验室,天津300192)
机构地区:[1]Key Laboratory of Advanced Energy Materials Chemistry(Ministry of Education),College of Chemistry,Nankai University,Tianjin 300071,China [2]Haihe Laboratory of Sustainable Chemical Transformations,Tianjin 300192,China
出 处:《电化学(中英文)》2024年第8期1-16,共16页Journal of Electrochemistry
基 金:the National Natural Science Foundation of China(22325902 and 51671107);Haihe Laboratory of Sustainable Chemical Transformations.
摘 要:Rechargeable lithium-oxygen(Li-O_(2))batteries have attracted wide attention due to their high energy density.However,the sluggish cathode kinetics results in high overvoltage and poor cycling performance.Ruthenium(Ru)-based electrocatalysts have been demonstrated to be promising cathode catalysts to promote oxygen evolution reaction(OER).It facilitates decomposition of lithium peroxide(Li_(2)O_(2))by adjusting Li_(2)O_(2) morphologies,which is due to the strong interaction between Ru-based catalyst and superoxide anion(O_(2))intermediate.In this review,the design strategies of Ru-based electrocatalysts are introduced to enhance their OER catalytic kinetics in Li-O_(2) batteries.Different configurations of Ru-based catalysts,including metal particles(Ru metal and alloys),single-atom catalysts,and Ru-loaded compounds with various substrates(carbon materials,metal oxides/sulfides),have been summarized to regulate the electronic structure and the matrix architecture of the Ru-based electrocatalysts.The structure-property relationship of Ru-based catalysts is discussed for a better understanding of the Li_(2)O_(2) decomposition mechanism at the cathode interface.Finally,the challenges of Ru-based electrocatalysts are proposed for the future development of Li-O_(2) batteries.可充电锂氧(Li-O_(2))电池因其高能量密度而受到广泛关注。然而,缓慢的阴极动力学导致较高过电压和较差的循环性能。为了克服这一问题,不同种类的阴极催化剂已经开始被探索。其中,钌基电催化剂已被证明是促进析氧反应(OER)的极具前景的阴极催化剂。由于钌基催化剂与超氧根阴离子(O_(2)-)中间体之间存在强相互作用,因此可以通过调节Li_(2)O_(2)的形态来促进过氧化锂(Li_(2)O_(2))的分解。本文介绍了钌基电催化剂的设计策略,以提高其在锂氧电池中的OER催化动力学。不同结构的钌基催化剂已经被总结,包括金属颗粒(钌金属和合金)、单原子催化剂和不同底物(碳材料、金属氧化物/硫化物)负载钌的化合物,以调节钌基电催化剂的电子结构和基体结构。这些钌基电催化剂调节了对LiO_(2)的吸附,提高了OER活性,抑制了副产物的形成,从而提升了Li-O_(2)电池的可逆性和循环稳定性。然而,Li-O_(2)电池仍然面临着许多挑战。其中之一是锂金属阳极的问题,锂的不稳定性和安全性一直是Li-O_(2)电池研究的一个关键问题。此外,电解质的选择和阴极材料的优化也是当前研究的重点之一。为了提高Li-O_(2)电池的性能,还需要对添加剂(即氧化还原介质)进行更深入的研究,以提高电池的循环寿命和能量密度。这些挑战的克服将需要跨学科的合作和持续的研究努力,以推动Li-O_(2)电池的进一步发展。
关 键 词:Lithium-oxygen battery Ruthenium-based electrocatalyst Reaction mechanism Reaction kinetics OVERVOLTAGE
分 类 号:TM912[电气工程—电力电子与电力传动] TQ426[化学工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49