基于MRI影像组学鉴别胶质瘤及单发脑转移瘤的应用研究  

Application Research of MRI Radiomics in Differentiating Glioma from Single Brain Metastases

在线阅读下载全文

作  者:王静[1] 宗会迁[1] 张娅 宋静 徐子超 彭兴珍 WANG Jing;ZONG Huiqian;ZHANG Ya;SONG Jing;XU Zichao;PENG Xingzhen(Department of Medical Imaging,The Second Hospital of Hebei Medical University,Shijiazhuang Hebei 050017,China;Department of Medical Equipment,The Second Hospital of Hebei Medical University,Shijiazhuang Hebei 050017,China)

机构地区:[1]河北医科大学第二医院医学影像科,河北石家庄050017 [2]河北医科大学第二医院医学装备部,河北石家庄050017

出  处:《中国医疗设备》2024年第9期94-100,共7页China Medical Devices

基  金:河北省卫生健康委科研基金项目(20230518)。

摘  要:目的分析基于多模态磁共振成像(Magnetic Resonance Imaging,MRI)影像组学鉴别胶质瘤及单发脑转移瘤的研究进展,得出提升鉴别准确性的要素。方法通过检索PubMed、Web of Science及FMRS外文医学信息资源检索平台3个数据库,根据纳入排除标准,对纳入的文章提取数据来源、患者数量、MRI设备、MRI序列、肿瘤分割软件、分割方式、分割范围、分割类型、特征提取方法、筛选方法、机器学习分类器、最优的机器学习分类器等数据进行综合分析。结果最终纳入12篇文献进行分析,大多数研究选择MRI传统结构序列,特征筛选方法选择最多的是最小绝对收缩和选择算子,使用最多且表现最佳的机器学习分类器为随机森林。结论MRI影像组学方法在鉴别胶质瘤及单发脑转移瘤方面展现出了较高的准确性,为临床决策提高了较大帮助。Objective To analyze the research progress in the identification of glioma and single brain metastases based on multimodal magnetic resonance imaging(MRI),and obtain the factors of improving accuracy in the identification.Methods Through searching three databases of PubMed,Web of Science and FMRS foreign medical information resource retrieval platform,according to the inclusion and exclusion criteria,a comprehensive analysis was made on data sources,number of patients,MRI equipment,MRI sequence,tumor segmentation software,segmentation methods,segmentation scopes,segmentation types,feature extraction methods,screening methods,machine learning classifiers and optimal machine learning classifiers of the included articles.Results A total of 12 articles were included for analysis.The traditional structural sequences of MRI were selected in most studies,least absolute shrinkage and selection operator was the most selected feature screening methods,and random forest was the machine learning classifier with the most use and the best performance.Conclusion MRI radiomics method shows high accuracy in differentiating glioma from single brain metastasis,which is of great help for clinical decision-making.

关 键 词:影像组学 磁共振成像 机器学习 胶质瘤 单发脑转移瘤 

分 类 号:R445.2[医药卫生—影像医学与核医学] R739.41[医药卫生—诊断学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象