检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Hui Guan Guorong Cai Hang Xu
机构地区:[1]Department of Computer Science and Technology,Shenyang University of Chemical Technology,Shenyang,110142,China [2]Key Laboratory of Industrial Intelligence Technology on Chemical Process,Shenyang,110142,China
出 处:《Machine Intelligence Research》2024年第5期993-1010,共18页机器智能研究(英文版)
基 金:supported by the Scientific Research Funding Project of Education Department of Liaoning Province 2021,China(No.LJKZ0434).
摘 要:Since requirement dependency extraction is a cognitively challenging and error-prone task,this paper proposes an automatic requirement dependency extraction method based on integrated active learning strategies.In this paper,the coefficient of variation method was used to determine the corresponding weight of the impact factors from three different angles:uncertainty probability,text similarity difference degree and active learning variant prediction divergence degree.By combining the three factors with the proposed calculation formula to measure the information value of dependency pairs,the top K dependency pairs with the highest comprehensive evaluation value are selected as the optimal samples.As the optimal samples are continuously added into the initial training set,the performance of the active learning model using different dependency features for requirement dependency extraction is rapidly improved.Therefore,compared with other active learning strategies,a higher evaluation measure of requirement dependency extraction can be achieved by using the same number of samples.Finally,the proposed method using the PV-DM dependency feature improves the weight-F1 by 2.71%,the weight-recall by 2.45%,and the weight-precision by 2.64%in comparison with other strategies,saving approximately 46%of the labelled data compared with the machine learning approach.
关 键 词:Requirement dependency dependency extraction dependency features integrated active learning strategies coefficient of variation
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.141.29.119