面向多元可控负荷调控的云边协同负荷资源分配策略  

Adaptive distributed cloud edge collaborative load control strategy for load management

在线阅读下载全文

作  者:李思维[1,2] 靳莉 于龙 杜立石 岳靓 张喜润 LI Siwei;JIN Li;YU Long;DU Lishi;YUE Liang;ZHANG Xirun(Key Laboratory of Smart Grid of Ministry of Education,Tianjin University,Tianjin 300072,China;Beijing FibrLINK Communications Co.,Ltd.,Beijing 100071,China)

机构地区:[1]天津大学智能电网教育部重点实验室,天津300072 [2]北京中电飞华通信有限公司,北京100071

出  处:《电信科学》2024年第8期52-62,共11页Telecommunications Science

基  金:国家电网公司总部科技项目(No.5400-202320223A-1-1-ZN)。

摘  要:针对多元可控负荷资源进行可控负荷管理时需要占用大量计算资源,且无法实现自动功率精准控制的问题,提出了一种面向多元可控负荷调控的云边协同负荷资源分配策略。首先,设计了云边协同调控架构,整合处理各种多元可控负荷资源数据;其次,考虑不同边缘节点计算任务的相似度,以所有计算任务的时间开销最小为优化目标,给出云端计算资源分配策略,合理分配计算资源;最后,通过基于自适应交叉—变异概率的遗传算法进行计算资源分配的求解。实验结果表明,所提算法在任务完成时间和执行成本上具有较为明显的优势,并且任务数量越多,计算资源越小时优势越明显,可以显著提升计算效率,降低计算耗时。To solve the problem that the controllable load management of multiple controllable load resources requires a lot of computing resources and can not achieve accurate automatic power control,a cloud-edge cooperative load resource allocation strategy for multiple controllable load regulation was proposed.Firstly,the collaborative control framework of cloud edge was designed to integrate and process the data of various controllable load resources.Secondly,considering the similarity of computing tasks of different edge nodes,the optimization goal was to minimize the time cost of all computing tasks,and the cloud computing resource allocation strategy was given to allocate computing resources reasonably.Finally,the computational resource allocation was solved by genetic algorithm based on adaptive cross-mutation probability.Finally,the calculation of resource allocation was solved using a genetic algorithm based on adaptive crossover mutation probability.The experimental results show that the algorithm proposed has significant advantages in task completion time and execution cost,and these advantages become more pronounced as the number of tasks increases and computing resources decrease.It can significantly improve computing efficiency and reduce computing time.

关 键 词:负荷管理 多元可控负荷 资源分配 云边协同 

分 类 号:TM734[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象