基于偏最小二乘回归的土壤碱解氮含量估测  

Estimation of soil alkali-hydrolyzed nitrogen content based on partial least squares regression

在线阅读下载全文

作  者:梁智永 陈署晃 赖宁 李永福 李嘉琦 孙法福 陈荣 耿庆龙 LIANG Zhi-yong;CHEN Shu-huang;LAI Ning;LI Yong-fu;LI Jja-qi;SUN Fa-fu;CHEN Rong;GENG Qing-long(College of Resources and Environment,Xinjiang Agricultural University,Urumqi Xinjiang 830052;Institute of Soil Fertilizer and Agricultural Water Saving,Xinjiang Academy of Agricultural Sciences,Urumqi Xinjang 830054)

机构地区:[1]新疆农业大学资源与环境学院,新疆乌鲁木齐830052 [2]新疆农业科学院土壤肥料与农业节水研究所,新疆乌鲁木齐830054

出  处:《中国土壤与肥料》2024年第7期40-48,共9页Soil and Fertilizer Sciences in China

基  金:农业科技创新稳定支持专项(xjnkywdzc-2022002)。

摘  要:构建基于室内高光谱数据的土壤碱解氮含量估测模型,为快速、准确获取土壤中养分信息提供新的方法。对新疆乌鲁木齐市106个风干的土壤样品进行研磨过筛,在室内进行反射率光谱数据的采集,对采集的光谱数据进行Savitzky-Golay滤波、一阶微分(FDR)、连续统去除(CR)、多元散射校正(MSC)4种预处理,在此基础上利用连续投影算法对预处理后的数据进行特征波段的筛选,用偏最小二乘回归建立不同预处理后土壤碱解氮含量预测的高光谱分析模型。模型评价指标采用决定系数(R^(2))、均方根误差(RMSE)、相对分析误差(RPD)平均相对误差(MAE)。结果显示:4种预处理方法中以连续统去除处理的预测精度最为突出,其模型R^(2)、RMSE、RPD、MAE分别为0.90、13.0、2.26、0.13;模型的线性回归方程为:y=0.9316x+8.763。因此,利用连续统去除结合偏最小二乘回归,能够较好地估测乌鲁木齐市土壤中碱解氮的含量。该结果可为室内高光谱数据快速反演土壤碱解氮含量提供理论依据。The estimation model of soil alkali-hydrolyzable nitrogen content based on indoor hyperspectral data was constructed,which provided a new method for rapid and accurate acquisition of nutrient information in soil.106 soil samples collected from Urumqi,Xinjiang were air-dried,ground and sifted,and the reflectance spectral data were collected indoors.The collected spectral data were pretreated by Savitzky-Golay filtering,first-order differentiation(FDR),continuum removal(CR)and multiple scattering correction(MSC).On this basis,continuous projection algorithm was used to screen the characteristic bands of the pre-treated data,and partial least squares regression was used to establish a hyperspectral analysis model for predicting soil alkali-hydrolyzed nitrogen content after different pretreatment.Coefficient of determination(R^(2)),root mean square error(RMSE),relative analysis error(RPD)and mean relative error(MAE)were used as evaluation indexes of the model.The results showed that the prediction accuracy of the continuous removal treatment was the most prominent among the four pretreatment methods.R^(2),RMSE,RPD and MAE were 0.90,13.0,2.26 and 0.13,respectively.The linear regression equation of the model was y=0.9316x+8.763.Therefore,the continuous projection algorithm combined with partial least squares regression could be used to estimate the content of alkali-hydrolyzed nitrogen in soil in Urumqi.The results could provide a theoretical basis for rapid inversion of soil alkali-hydrolyzed nitrogen content with indoor hyperspectral data.

关 键 词:偏最小二乘回归 高光谱遥感 光谱变换 估测模型 连续投影算法 

分 类 号:S153[农业科学—土壤学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象