检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邱小燕 王佳佳 QIU Xiaoyan;WANG Jiajia(School of Economics and Management,Shanghai Institute of Technology,Shanghai 201418,China;School of Emergency Management,Xihua University,Chengdu 610039,China)
机构地区:[1]上海应用技术大学经济与管理学院,上海201418 [2]西华大学应急管理学院,成都610039
出 处:《应用技术学报》2024年第3期376-384,共9页Journal of Technology
摘 要:社交媒体中常用的谣言净化方式包括专业账号辟谣、普通用户举报、平台“封号”和系统通知等。对这4种谣言净化机制进行综合量化分析可以为谣言干预策略的实施提供量化依据。建立带有这4种谣言净化机制的谣言传播模型,推导平均场方程,通过理论与仿真分析其谣言净化效果。得到如下结论:加强向不知谣言者普及真相的净化效果好于加强说服谣言传播者停止传播的效果;知真相者参与辟谣的积极性及其人群比例影响净化效果;在谣言传播不同时期“封号”,其净化效果不同;越早实施系统通知,净化效果越好,同时提高系统通知的可靠性和关注度也会有很好的成效。There are four common ways to refute rumors on the social media.Namely,professional anti rumor accounts refute rumors,ordinary users report rumors,social networking platforms delete accounts and post system notifications.Quantitative analysis of rumor purification mechanisms can support the implementation of rumor intervention strategies.In this paper,these methods are quantized into the rumor spreading model,mean-field equations are established,the stability analysis and numerical simulations are carried out to analyze the rumor refutation effects.Results show that:the rumor refuting effects by informing ignorants of truth are better than that by persuading rumor spreaders into stopping the rumor spreading.The attendance of individuals knowing the truth in refuting the rumor and its proportion affect the refutation effects.The effects are different when deleting accounts at different rumor spreading periods.The earlier the system notifications published,the better the rumor refuting effects.The enhancement in the reliability and high attendance of the system notifications also have great performance in rumor refuting.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7