检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:许迩璇
机构地区:[1]东北大学秦皇岛分校
出 处:《审计与理财》2024年第9期55-58,共4页
摘 要:本文选用随机森林模型研究个人信贷风险,该模型较传统风险评估模型具有抗噪声能力强、防止过拟合、运算快速等特点。本文选取Lending Club平台2020年Q1~Q3的5551条样本数据构建基础数据集以训练模型,建立个人信用体系和评估模型。本文在预处理数据并筛选特征变量后,基于随机森林算法建立了个人信用风险评估模型,并对比Logistic回归模型,得到随机森林模型的个人信用风险评估能力明显优于Logistic回归模型的结果,进一步证实随机森林模型高度适用于个人信用风险评估并具备较强有效性。
分 类 号:F832.4[经济管理—金融学] TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.26