Salp Swarm Incorporated Adaptive Dwarf Mongoose Optimizer with Lévy Flight and Gbest-Guided Strategy  

在线阅读下载全文

作  者:Gang Hu Yuxuan Guo Guanglei Sheng 

机构地区:[1]Department of Applied Mathematics,Xi’an University of Technology,Xi’an,710054,People’s Republic of China [2]School of Computer Science and Engineering,Xi’an University of Technology,Xi’an,710048,People’s Republic of China [3]Department of Electronics and Information Engineering,Bozhou University,Bozhou,236800,People’s Republic of China

出  处:《Journal of Bionic Engineering》2024年第4期2110-2144,共35页仿生工程学报(英文版)

基  金:National Natural Science Foundation of China,Grant No.52375264.

摘  要:In response to the shortcomings of Dwarf Mongoose Optimization(DMO)algorithm,such as insufficient exploitation capability and slow convergence speed,this paper proposes a multi-strategy enhanced DMO,referred to as GLSDMO.Firstly,we propose an improved solution search equation that utilizes the Gbest-guided strategy with different parameters to achieve a trade-off between exploration and exploitation(EE).Secondly,the Lévy flight is introduced to increase the diversity of population distribution and avoid the algorithm getting stuck in a local optimum.In addition,in order to address the problem of low convergence efficiency of DMO,this study uses the strong nonlinear convergence factor Sigmaid function as the moving step size parameter of the mongoose during collective activities,and combines the strategy of the salp swarm leader with the mongoose for cooperative optimization,which enhances the search efficiency of agents and accelerating the convergence of the algorithm to the global optimal solution(Gbest).Subsequently,the superiority of GLSDMO is verified on CEC2017 and CEC2019,and the optimization effect of GLSDMO is analyzed in detail.The results show that GLSDMO is significantly superior to the compared algorithms in solution quality,robustness and global convergence rate on most test functions.Finally,the optimization performance of GLSDMO is verified on three classic engineering examples and one truss topology optimization example.The simulation results show that GLSDMO achieves optimal costs on these real-world engineering problems.

关 键 词:Dwarf mongoose optimization algorithm Gbest-guided Lévy flight Adaptive parameter Salp swarm algorithm Engineering optimization Truss topological optimization 

分 类 号:Q81[生物学—生物工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象