检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谢文武 李攀 肖健 王骥 杨亮 XIE Wenwu;LI Pan;XIAO Jian;WANG Ji;YANG Liang(School of Information Science and Engineering,Hunan Institute of Science and Technology,Yueyang 414006,China;School of Physical Science and Technology,Central China Normal University,Wuhan 430079,China;School of Information Science and Engineering,Hunan University,Changsha 410082,China)
机构地区:[1]湖南理工学院信息科学与工程学院,岳阳414006 [2]华中师范大学物理科学与技术学院,武汉430079 [3]湖南大学信息科学与工程学院,长沙410082
出 处:《北京邮电大学学报》2024年第4期136-142,共7页Journal of Beijing University of Posts and Telecommunications
基 金:国家自然科学基金项目(62101205);湖南省自然科学基金项目(2023JJ50045);湖北省重点研发计划项目(2023BAB061)。
摘 要:受发射端的功率分配与叠加编码的影响,基于单任务神经网络的功率域非正交多址接入(NOMA)符号检测算法无法兼容不同用户的符号检测任务。针对用户辅助的协作多输入多输出(MIMO)-NOMA通信系统,设计基于多任务神经网络的符号检测算法,通过学习协作MIMO-NOMA系统中信号的深层共享特征,实现不同用户的联合符号检测。由于协作通信中不同用户接收信号的数据分布不同,并且存在数据孤岛问题,而机器学习模型要求训练数据和测试数据均独立采样于同一数据分布,因此提出多任务联邦学习框架来解决这一问题。实验结果表明,随着信噪比的提高,所提出的符号检测算法较传统符号检测算法展现出更好的性能。Influenced by the power allocation and superposition coding at the transmitter side,the power-domain non-orthogonal multiple access(NOMA)symbol detection algorithm based on a single-task neural network is not compatible with the symbol detection task for different users.A symbol detection algorithm based on multi-task neural network is designed for user-assisted cooperative multiple-input multiple-output(MIMO)-NOMA communication system,which can learn the deep shared features of data and detect symbols of different users simultaneously.In cooperative communication,the signal data received by different users are distributed differently,and there is a problem of data island.However,the training data and the test data are required by the machine learning model to be independently and equally distributed.Therefore,the multi-task federal learning framework isproposed to address this problem.The experimental results show that with the improvement of signal-noise-ratio(SNR),the proposed symbol detection algorithm has better performance than the traditional symbol detection algorithm.
分 类 号:TN925.1[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49