检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:舒服华[1] SHU Fuhua(Wuhan University of Technology,Wuhan Hubei 430070)
机构地区:[1]武汉理工大学,湖北武汉430070
出 处:《陕西国防职教研究》2024年第3期15-19,共5页Shaanxi Guofang Vocational Education Research
摘 要:由于湖北省粮食播种面积、高标准农田数量、耕地有效灌溉面积、农业生产机械化率数据之间存在多重共线性,分析其对湖北省粮食产量影响时,运用最小二乘法估计参数容易失真而缺乏解释性。因此,利用能够解决多重共线性问题的主成分回归来分析粮食播种面积、高标准农田数量、耕地有效灌溉面积、农业生产机械化率对湖北省粮食产量影响。回归的参数客观可靠,真实有效,通过对解释变量的释读,结果发现与湖北省粮食生产的实现情况基本吻合。Due to the multidisciplinary between the data of grain sown area,the quantity of high-standard farmland,the effective irrigated area of cultivated land and the mechanization rate of agricultural production in Hubei Province,when analyzing the impact of the data on grain output in Hubei Province,the least squares method is used to estimate the parameters and lacks interoperability.Therefore,the principal component regression that can solve the problem of multiple collinearity is used to analyze the sown area of grain,the number of high-standard farmland,the effective irrigation area of cultivated land and the mechanization rate of agricultural production on the grain yield in Hubei Province.The parameters of the regression are objective and reliable,true and effective.Through the interpretation of the explanatory variables,the results are found to be basically consistent with the realization of grain production in Hubei Province.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7