机构地区:[1]Department of Chemistry,School of Science,Tokyo Institute of Technology,2-12-1-NE-2 Ookayama,Meguro-ku,Tokyo 152-8550,Japan [2]Department of Chemistry,University of Pennsylvania,231 S.34th Street Philadelphia,PA 19104,United States [3]Global Zero Emission Research Center(GZR),National Institute of Advanced Industrial Science and Technology(AIST),West,16-1,Onogawa,Tsukuba,Ibaraki 305-8569,Japan [4]International Center for Materials Nanoarchitectonics(WPI-MANA),National Institute for Materials Science(NIMS),Tsukuba,Ibaraki 305-0044,Japan [5]Research Center for Autonomous Systems Materialogy(ASMat),Tokyo Institute of Technology,4259 Nagatsuta-cho,Midori-ku,Yokohama,Kanagawa 226-8501,Japan
出 处:《Chinese Journal of Catalysis》2024年第8期124-132,共9页催化学报(英文)
摘 要:A dye-sensitized photocatalyst combining Pt-loaded TiO_(2) and Ru(Ⅱ)tris-diimine sensitizer(RuP)was constructed and its activity for photochemical hydrogen evolution was compared with that of Pt-intercalated HCa_(2)Nb_(3)O_(10) nanosheets.When the sacrificial donor ethylenediaminetetraacetic acid(EDTA)disodium salt dihydrate was used,RuP/Pt/TiO_(2) showed higher activity than RuP/Pt/HCa_(2)Nb_(3)O_(10).In contrast,when NaI(a reversible electron donor)was used,RuP/Pt/TiO_(2) showed little activity due to back electron transfer to the electron acceptor(I_(3)-),which was gener-ated as the oxidation product of I-.By modification with anionic polymers(sodium poly(styrenesulfonate)or sodium polymethacrylate)that could inhibit the scavenging of conduction band electrons by I_(3)-,the H_(2) production activity from aqueous NaI was improved,but it did not exceed that of RuP/Pt/HCa_(2)Nb_(3)O_(10).Transient absorption measurements showed that the rate of semiconductor-to-dye back electron transfer was slower in the case of TiO_(2) than HCa_(2)Nb_(3)O_(10),but the electron transfer reaction to I3-was much faster.These results indicate that Pt/TiO_(2) is useful for reactions with sacrificial reductants(e.g.,EDTA),where the back electron transfer reaction to the more reducible product can be neglected.However,more careful design of the catalyst will be nec-essary when a reversible electron donor is employed.将负载Pt的TiO_(2)与Ru(Ⅱ)三亚胺敏化剂(RuP)相结合,构建了一种染料敏化光催化剂RuP/Pt/TiO_(2),并探索其在光化学析氢反应中的应用.通过对比实验,评估了该催化剂与Pt插层HCa_(2)Nb_(3)O_(10)纳米片催化剂RuP/Pt/HCa_(2)Nb_(3)O_(10)在不同电子供体条件下的析氢活性.当以乙二胺四乙酸(EDTA)二钠盐二水合物作为牺牲供体时,RuP/Pt/TiO_(2)表现出比Ru P/Pt/HCa_(2)Nb_(3)O_(10)更高的催化活性,这归因于Pt/TiO_(2)复合材料在牺牲性还原剂EDTA存在下,能够有效抑制反向电子传递从而提高了光生电子的利用效率.然而,当采用NaI作为电子供体时,由于RuP/Pt/TiO_(2)存在向I-氧化产生的电子受体I_(3)-的反向电子传递,导致其活性显著降低.为了克服这一问题,通过用阴离子聚合物(如聚甲基丙烯酸钠PMA或聚苯乙烯磺酸钠PSS)对RuP/Pt/TiO_(2)进行改性,这些聚合物能够有效抑制I_(3)-对导带电子的捕获,进而提升了在NaI水溶液中的产氢活性.尽管如此,改性后的RuP/Pt/TiO_(2)材料在产氢活性上仍未超过未改性的RuP/Pt/HCa_(2)Nb_(3)O_(10).瞬态吸收测量结果表明,与HCa_(2)Nb_(3)O_(10)相比,TiO_(2)的反向电子转移速率较慢,但电子向I3-的转移反应却快得多.这一发现凸显了催化剂设计的复杂性及其对反应性能的重要影响.在设计光催化剂时,需要综合考虑半导体材料、染料敏化剂以及电子供体的相互作用,以实现高效的电子转移和抑制不必要的反向电子传递.综上可见,Pt/TiO_(2)基染料敏化光催化剂在与牺牲还原剂(如EDTA)的反应中表现出色,其中可以忽略更易还原产物的反向电子转移反应;然而,当使用可逆电子供体(如NaI)时,则需要对催化剂进行针对性的设计,以达到理想的反应活性.此外,通过优化染料敏化析氢体系中的助催化剂,有望进一步提升正向电子传递效率,从而显著增强复合材料整体的光催化性能.本研究不仅深化了对光催化析�
关 键 词:Artificial photosynthesis Solar fuel Water splitting Z-scheme
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...