Excellent alkali resistance of Fe,Ce and sulfates co-modified V_(2)O_(5)-WO_(3)/TiO_(2) catalyst for selective catalytic reduction of NO_(x) with NH_(3)  

在线阅读下载全文

作  者:Biyi Huang Xianfang Yi Jianyi Zhang Yuqiu Liu Yanting Chen Jinsheng Chen Jinxiu Wang 

机构地区:[1]Center for Excellence in Regional Atmospheric Environment,and Key Lab of Urban Environment and Health,Institute of Urban Environment,Chinese Academy of Sciences,Xiamen,361021,China [2]College of Resources and Environment,Fujian Agriculture and Forestry University,Fuzhou,350002,China [3]Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention,Institute of Urban Environment,Chinese Academy of Sciences,Xiamen,361021,China [4]University of Chinese Academy of Sciences,Beijing,100049,China

出  处:《Journal of Rare Earths》2024年第9期1682-1692,I0002,共12页稀土学报(英文版)

基  金:Project supported by Fujian Provincial Department of Science and Technology,China (2020Y0085);Youth Innovation Promotion Association,Chinese Academy of Sciences (2020309);the Cultivating Project of Strategic Priority Research Program of Chinese Academy of Sciences (XDPB1902)。

摘  要:Improving the alkali resistance of catalysts for selective catalytic reduction of NO_(x) with NH_(3) is still a challenge.In this work,the co-modification with Fe,Ce and sulfates on V_(2)O_(5)-WO_(3)/TiO_(2) catalysts(denoted as xSFeCeVWTi) significantly enhances its alkali resistance with K element as a representative.A series of xSFeCeVWTi catalysts was synthesized by wet impregnation with designed 0.05Fe/V, 1.5Ce/V and different S/V molar ratios x.The NO_(x) conversion and K resistance of xSFeCeVWTi catalysts increase with the increase of loading amounts of sulfates but no longer further increase as the sulfates load is excessive to block the pores of catalysts and hinder the adsorption of reactants.The optimal modified catalyst in about 2.2S/V actual loading ratio,corresponding to 10.5SFeCeVWTi sample,shows over 99.0%NO_(x) conversion and N_(2) selectivity at 300-400℃ after K-poisoning.The interaction between Fe,Ce and V improves its redox ability but slightly weakens surface acidity,while the proper amount of sulfate species enriches surface Br?nsted acid sites but attenuates its redox capability.However,a balance of redox capacity and surface acidity,caused by Fe,Ce and sulfate co-modification,contributes to the excellent K resistance of 10.5SFeCeVWTi catalyst.Finally,the change of physicochemical properties influences the reaction mechanism which follows the Eley-Rideal mechanism on 10.SSFeCeVWTi catalyst.These results show that the co-modification with Fe,Ce and sulfates is a good way to improve the alkali tolerance of V_(2)O_(5)-WO_(3)/TiO_(2) catalyst in industrial applications.

关 键 词:SCR CeO_(2) Fe_(2)O_(3) SO_(4)^(2-) K resistance K poisoning 

分 类 号:O643.36[理学—物理化学] X701[理学—化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象