检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Department of Mathematics,Quaid-I-Azam University Islamabad44230,Pakistan
出 处:《International Journal of Biomathematics》2024年第4期1-38,共38页生物数学学报(英文版)
摘 要:The study of the population dynamics of a three-species Lotka-Volterra model is crucial in gaining a deeper understanding of the delicate balance between prey and predator populations.This research takes a unique approach by exploring the stability of fixed points and the occurrence of Hopf bifurcation.By using the bifurcation theory,our study provides a comprehensive analysis of the conditions for the existence of Hopf bifurcation.This is validated through detailed numerical simulations and visual representations that demonstrate the potential for chaos in these systems.To mitigate this instability,we employ a hybrid control strategy that ensures the stability of the controlled model even in the presence of Hopf bifurcation.This research is not only significant in advancing the field of ecology but also has far-reaching practical implications for wildlife management and conservation efforts.Our results provide a deeper understanding of the complex dynamics of prey-predator interactions and have the potential to inform sustainable management practices and ensure the survival of these species.
关 键 词:Fixed points existence and uniqueness Hopf bifurcation
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.220.22.253