Spatial dynamics of a reaction-diffusion SIS epidemic model with mass-action-type nonlinearity  

在线阅读下载全文

作  者:Renhu Wang Xuezhong Wang 

机构地区:[1]School of Mathematics and Statistics Lanzhou University,Lanzhou,Gansu 730000,P.R.China [2]School of Mathematics and Statistics Heci University,Zhangye 734000,P.R.China

出  处:《International Journal of Biomathematics》2024年第4期75-104,共30页生物数学学报(英文版)

基  金:supported by the NNSF of China(Grant No.12061032).

摘  要:This work is devoted to investigate the global asymptotic stability of equilibriums for a reaction-diffusion susceptible-infected-susceptible(SIS)epidemic model with spatial heterogeneity and mass-action-type nonlinearity.By discretizing the spatial variables of the model,first,Lyapunov functions are constructed for the corresponding ordinary differential equations(ODEs)model of the original SIS PDEs model,and then the construction method is generalized to the PDEs model in which either the susceptible or the infectious individuals are spreading in spatial heterogeneity environment.For both the cases,we obtained the standard threshold dynamics results.

关 键 词:DISCRETIZATION basic reproduction number Lyapunov functional global stability spatial heterogeneity 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象