检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Seval Isik Figen Kangalgil
机构地区:[1]Department of Mathematics and Science Education,Faculty of Education Sivas Cumhuriyet University,58140 Sivas,Turkey [2]Bergama Vocational School Dokuz Eylul University,35700 Izmir,Turkey
出 处:《International Journal of Biomathematics》2024年第4期105-131,共27页生物数学学报(英文版)
摘 要:In this paper,the dynamical behaviors of a discrete-time fractional-order population model are considered.The stability analysis and the topological classification of the model at the fixed point have been investigated.It is shown that the model undergoes flip and Neimark-Sacker bifurcations around the co-existence fixed point by using the bifurcation and the normal form theory.These bifurcations lead to chaos when the parameter changes at critical point.In order to control chaotic behavior in the model result from Neimark-Sacker bifurcation,the OGY feedback method has been used.Furthermore,some numerical simulations,including bifurcation diagrams,phase portraits and maximum Lyapunov exponents of the presented model are plotted to support the correctness of the analytical results.The positive Lyapunov exponents demonstrate that chaotic behavior exists in the considered model.
关 键 词:FRACTIONAL-ORDER predator-prey model DISCRETIZATION BIFURCATION CHAOS
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.224