Dynamical analysis and chaos control of a fractional-order Leslie-type predator-prey model with Caputo derivative  

在线阅读下载全文

作  者:Seval Isik Figen Kangalgil 

机构地区:[1]Department of Mathematics and Science Education,Faculty of Education Sivas Cumhuriyet University,58140 Sivas,Turkey [2]Bergama Vocational School Dokuz Eylul University,35700 Izmir,Turkey

出  处:《International Journal of Biomathematics》2024年第4期105-131,共27页生物数学学报(英文版)

摘  要:In this paper,the dynamical behaviors of a discrete-time fractional-order population model are considered.The stability analysis and the topological classification of the model at the fixed point have been investigated.It is shown that the model undergoes flip and Neimark-Sacker bifurcations around the co-existence fixed point by using the bifurcation and the normal form theory.These bifurcations lead to chaos when the parameter changes at critical point.In order to control chaotic behavior in the model result from Neimark-Sacker bifurcation,the OGY feedback method has been used.Furthermore,some numerical simulations,including bifurcation diagrams,phase portraits and maximum Lyapunov exponents of the presented model are plotted to support the correctness of the analytical results.The positive Lyapunov exponents demonstrate that chaotic behavior exists in the considered model.

关 键 词:FRACTIONAL-ORDER predator-prey model DISCRETIZATION BIFURCATION CHAOS 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象