检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宋君 高磊 王奎越 曹忠华 马驰宇 马晓国 SONG Jun;GAO Lei;WANG Kuiyue;CAO Zhonghua;MA Chiyu;MA Xiaoguo(Ansteel Beijing Research Institute Co.,Ltd.,Beijing 102211,China;Ansteel Iron&Steel Research Institutes,Anshan 114009,China)
机构地区:[1]鞍钢集团北京研究院有限公司,北京102211 [2]鞍钢集团钢铁研究院,辽宁鞍山114009
出 处:《冶金自动化》2024年第4期21-32,共12页Metallurgical Industry Automation
基 金:国家重点研发计划项目(2022YFB3304800)。
摘 要:传统的性能预测和优化方法多基于经验和机理,未充分考虑到数据中蕴含的价值。如何挖掘钢材性能与相关工艺参数之间的线性非线性传递关系,实现高精度的性能预测和工艺优化是目前的研究热点之一。以热轧板带制造全过程的高维工艺质量数据集为基础,提出了一种融合机器学习性能预测模型和沙普利加和解释(Shapley additive explanation, SHAP)框架的热轧带钢性能优化方法。该方法首先以最大互信息系数(maximal information coefficient, MIC)相关性评价指标从高维的工艺数据中筛选与机械性能指标存在显著影响关系的有效变量;然后通过对比基于多输出支持向量回归模型(multiple output support vector regression, MSVR)、支持向量回归模型(support vector regression, SVR)和随机森林的性能预测模型的预测精度,选取最优性能预测模型;最后,基于SHAP解释框架和最优预测模型进行工艺参数评价,度量各工艺参数对最终性能的量化影响,并通过对操作变量按SHAP分析的结果进行调整,以验证性能优化的效果。实验结果表明,本文提出的性能优化方法可显著按需求改善性能指标,对于钢铁生产过程的机械性能管控具有指导意义。Traditional mechanical properties prediction and optimization methods are mostly based on experience and mechanisms,and do not fully consider the value contained in the data.One of the current research hot spots is how to explore the linear and nonlinear transfer relationship between steel performance and related process parameters,construct highprecision performance prediction models,and achieve process optimization.Based on the highdimensional process quality dataset of the throughout manufacturing process of hot rolled strip,a performance optimization method for hot rolled strip steel was proposed that integrated machine learning performance prediction model and Shapley additive explanation(SHAP)interpretation framework.This method first uses maximal information coefficient(MIC)metrics to select effective variables that have a significant impact on mechanical performance indicators from highdimensional process parameters dataset.Then,by comparing the prediction accuracy of performance prediction models based on multiple output support vector regression(MSVR),support vector regression(SVR),and random forest,the optimal performance prediction model is selected.Finally,based on the SHAP interpretation framework and optimal prediction model,process parameter evaluation is conducted to measure the quantitative impact of each process parameter on the final performance,and the operational variables are adjusted according to the results of SHAP analysis to verify the effectiveness of performance optimization.The experimental results indicate that the performance optimization method proposed in this paper can significantly improve performance indicators according to demand,and has guiding significance for mechanical performance control in steel production processes.
关 键 词:热轧带钢 机械性能预测 机器学习 沙普利加和解释框架 机械性能优化
分 类 号:TG335.56[金属学及工艺—金属压力加工] TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33