Voice Fence Wall:User-optional voice privacy transmission  

在线阅读下载全文

作  者:Li Luo Yining Liu 

机构地区:[1]School of Computer and Information Security,Guilin University of Electronic Technology,Guilin 541004,China

出  处:《Journal of Information and Intelligence》2024年第2期116-129,共14页信息与智能学报(英文)

基  金:supported by National Natural Science Foundation of China(62072133);the Innovation Project of Guangxi Graduate Education(YCSW2023330)。

摘  要:Sensors are widely applied in the collection of voice data.Since many attributes of voice data are sensitive such as user emotions,identity,raw voice collection may lead serious privacy threat.In the past,traditional feature extraction obtains and encrypts voice features that are then transmitted to upstream servers.In order to avoid sensitive attribute disclosure,it is necessary to separate the sensitive attributes from non-sensitive attributes of voice data.Motivated by this,user-optional privacy transmission framework for voice data(called:Voice Fence Wall)is proposed.Firstly,we provide user-optional,which means users can choose the attributes(sensitive attributes)they want to be protected.Secondly,Voice Fence Wall utilizes minimum mutual information(MI)to reduce the correlation between sensitive and non-sensitive attributes,thereby separating these attributes.Finally,only the separated non-sensitive attributes are transmitted to the upstream server,the quality of voice services is satisfied without leaking sensitive attributes.To verify the reliability and practicability,three voice datasets are used to evaluate the model,the experiments demonstrate that Voice Fence Wall not only effectively separates attributes to resist attribute inference attacks,but also outperforms related work in terms of classification performance.Specifically,our framework achieves 89.84%accuracy in sentiment recognition and 6.01%equal error rate in voice authentication.

关 键 词:Voice collection Voice Fence Wall Voice privacy Mutual information 

分 类 号:TP309[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象