检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Sean Lalla Rongxing Lu Yunguo Guan Songnian Zhang
出 处:《Journal of Information and Intelligence》2024年第2期130-147,共18页信息与智能学报(英文)
基 金:supported by collaborative research funding from the National Research Council of Canada's Aging in Place Challenge Program.
摘 要:Outsourcing decision tree models to cloud servers can allow model providers to distribute their models at scale without purchasing dedicated hardware for model hosting.However,model providers may be forced to disclose private model details when hosting their models in the cloud.Due to the time and monetary investments associated with model training,model providers may be reluctant to host their models in the cloud due to these privacy concerns.Furthermore,clients may be reluctant to use these outsourced models because their private queries or their results may be disclosed to the cloud servers.In this paper,we propose BloomDT,a privacy-preserving scheme for decision tree inference,which uses Bloom filters to hide the original decision tree's structure,the threshold values of each node,and the order in which features are tested while maintaining reliable classification results that are secure even if the cloud servers collude.Our scheme's security and performance are verified through rigorous testing and analysis.
关 键 词:Decision tree Privacy-preserving machine learning Bloom filter Model outsourcing
分 类 号:TP309[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28