检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张四杰 李晓东 路亚恒 ZHANG Sijie;LI Xiaodong;LU Yaheng(State Grid Henan Extra High Voltage Company,Zhengzhou,Henan 450000,China)
机构地区:[1]国网河南省电力公司超高压公司,河南郑州450000
出 处:《自动化应用》2024年第16期75-77,共3页Automation Application
摘 要:随着电网监控系统数据量的日益增长,数据冗余成为影响电网稳定性的关键挑战。通过深入分析500 kV高压电网监控数据特征,设计并实现了一种自编码器网络结构,用于有效学习数据的压缩表示,从而优化数据存储和处理流程。此外,为了加速模型的推理速度并适应端设备的资源限制,提出了高效的模型轻量化策略。结果表明,所提方法在减少数据存储需求和提升数据处理效率方面取得了显著成效,同时保持了监控数据的完整性和系统的快速响应能力。With the increasing amount of data in the power grid monitoring system,data redundancy has become a key challenge affecting the stability of the power grid.Through in-depth analysis of the monitoring data characteristics of the 500 kV high-voltage power grid,an autoencoder network structure was designed and implemented to effectively learn the compressed representation of data,thereby optimizing the data storage and processing flow.In addition,an efficient model lightweighting strategy has been proposed to accelerate the inference speed of the model and adapt to the resource constraints of end devices.The results indicate that the proposed method has achieved significant results in reducing data storage requirements and improving data processing efficiency,while maintaining the integrity of monitoring data and the system′s rapid response capability.
分 类 号:TM73[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171