基于NSDE算法的公交发车间隔优化研究  

Research on Bus Departure Interval Optimization Based on NSDE Algorithm

在线阅读下载全文

作  者:郭鸿钧 辛基源 GUO Hongjun;XIN Jiyuan(Gansu Transportation Vocational and Technical College,Lanzhou,Gansu 730070,China)

机构地区:[1]甘肃交通职业技术学院,甘肃兰州730070

出  处:《自动化应用》2024年第16期196-200,共5页Automation Application

摘  要:合理的公交发车间隔是影响乘客候车时间及公交运营成本的重要因素。为平衡乘客和公交公司双方的利益,构建了以乘客候车成本最低及公交运营成本最低为目标的公交车发车间隔优化多目标模型,设计了求解模型的非支配排序差分进化算法(NSDE),然后以兰州市15路公交线路为例进行了实证研究,并将NSDE算法的计算结果与传统的非支配排序遗传算法(NSGA-Ⅱ)进行对比。结果表明,与优化前的发车间隔相比,所提优化模型能在降低6.67%的乘客候车成本的同时节约8.46%的公交运营成本,具有较强的实用性;与传统的NSGA-Ⅱ相比,NSDE求出的Pareto前沿分布更加均匀,算法的收敛速度能提高约30%,验证了所建公交发车间隔优化模型及NSDE算法的适用性和有效性。Reasonable bus departure interval is an important factor affecting passenger waiting time and bus operation cost.In order to balance the interests of both passengers and bus companies,a multi-target for bus departure interval optimization with minimum passenger waiting cost and minimum bus operating cost is constructed.The model is designed to solve the model′s non-dominated sorting differential evolution algorithm(NSDE).Then the Lanzhou 15 bus line is taken as an example to carry out empirical research,and the calculation result of NSDE algorithm is compared with the traditional non-dominated sorting genetic algorithm(NSGA-Ⅱ).The results show that compared with the departure interval before optimization,the optimization model proposed in this paper can reduce the passenger waiting cost of 6.67%while saving 8.46%of bus operation cost,which has strong practicability.Compared with traditional NSGA-Ⅱ,the Pareto frontier distribution obtained by NSDE is more uniform,and the convergence speed of the algorithm can be improved by about 30%.The applicability and effectiveness of the proposed bus departure interval optimization model and NSDE algorithm are verified.

关 键 词:公共交通 发车间隔 多目标 非支配排序差分进化算法 

分 类 号:U116.1[交通运输工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象